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a b s t r a c t 

Molecular motor proteins serve as an essential component of intracellular transport by generating forces 

to haul cargoes along cytoskeletal filaments. Two species of motors that are directed oppositely (e.g. ki- 

nesin, dynein) can be attached to the same cargo, which is known to produce bidirectional net motion. 

Although previous work focuses on the motor number as the driving noise source for switching, we pro- 

pose an alternative mechanism: cargo diffusion. A mean-field mathematical model of mechanical inter- 

actions of two populations of molecular motors with cargo thermal fluctuations (diffusion) is presented 

to study this phenomenon. The delayed response of a motor to fluctuations in the cargo velocity is quan- 

tified, allowing for the reduction of the full model a single “characteristic distance”, a proxy for the net 

force on the cargo. The system is then found to be metastable, with switching exclusively due to cargo 

diffusion between distinct directional transport states. The time to switch between these states is then 

investigated using a mean first passage time analysis. The switching time is found to be non-monotonic 

in the drag of the cargo, providing an experimental test of the theory. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

Active transport is a key component of cellular function due to

he compartmental nature of cellular machinery. This transport is

chieved through the use of molecular motor proteins, which un-

ergo a series of conformational changes to walk along cytoskeletal

laments and generate forces to haul cargoes ( Howard, 2001 ). The

ransport of a single cargo can often involve two families of motors

hat are directed oppositely. For instance, kinesin, which primar-

ly walks in the positive direction of a microtubule, and dynein,

rimarily in the negative direction, can be attached to the same

argo. Another possibility is that two populations of the same fam-

ly of kinesin motor can be attached to a cargo but walk along op-

ositely oriented microtubule tracks ( Osunbayo et al., 2015 ). This

henomenon of opposing motor populations is observed for a wide

ariety of cargoes: mRNA particles, virus particles, endosomes, and

ipid droplets ( Hendricks et al., 2010; Kunwar et al., 2008 ). Al-

hough both families of motors are exerting forces on the cargo

n opposite directions, the net motion of cargo transport is able to

witch. That is, the cargo spends periods of time with a net posi-

ive, negative, and zero velocity (denoted a pause state), the overall

otion of which is denoted bidirectional transport ( Hancock, 2014 ).
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his intuitively inefficient transport phenomenon is thought to

erve a role in pattern formation ( Brooks and Bressloff, 2016 ) or

patially uniform cargo delivery ( Bressloff and Levien, 2015 ). How-

ver, this work focuses on the mechanism of switching. That is, the

istinct switching between directions suggests the existence of a

echanism of cooperation between the motor families, which has

een explored previously from both experimental and theoretical

erspectives. 

The role of external influences in the cooperation mechanism

emains unclear. A number of studies have identified regulators of

inesin and dynein ( Fu and Holzbaur, 2014 ). For instance, LIS1 and

udE have been found to modulate dynein’s force production capa-

ilities ( McKenney et al., 2010 ). In Shojania Feizabadi et al. (2015) ,

he authors found that the microtubule itself can regulate kinesin

orce production. However, the necessity of these external regula-

ors for motor coordination in bidirectional transport remains un-

stablished. The alternative hypothesis relies on the notion that the

oordination is a product of the mechanical interactions of the mo-

ors with the cargo, denoted a tug-of-war scenario. 

The tug-of-war hypothesis has also been investigated from a

heoretical and experimental perspective. The authors in Müller

t al. (2008) formulate the most notable mathematical model ca-

able of producing bidirectionality. In the model, the motors share

he load equally. This assumption is not always invoked in later

athematical models. For instance, Kunwar et al. (2011) performs

tochastic simulations of unequally distributed motors. However,

http://dx.doi.org/10.1016/j.jtbi.2017.04.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jtbi
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2017.04.032&domain=pdf
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Fig. 1. A diagram of the mean-field model setup. The quantity, x , denoting the dis- 

tance a motor is stretched is always measured with respect to the orientation of 

the microtubule. 
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these authors compare the results of the stochastic simulation with

experiments and conclude that switching statistics do not match

as the number of motors varies. In Soppina et al. (2009) , another

mathematical model is proposed where the two motor popula-

tions are required to be asymmetric. That is, the two opposing

motor populations must have different force generating proper-

ties to break symmetry. Lipowsky et al. (2010) ; 2006 ) also pro-

vide noteworthy mathematical models, thinking of motor trans-

port as a “rubber-band”-like process and find rich dynamics. Al-

though not specifically about tug-of-war, motor population models

such as the Huxley crossbridge model ( Huxley, 1957; Keener and

Sneyd, 2008 ) use force-velocity relationships for the motor pop-

ulations. However, since this analysis is a steady-state analysis, it

is difficult to infer dynamics, which we address in our model. In

Bouzat (2016) , the authors reexamine the mathematical model of

Kunwar et al. (2011) and stress the importance of cargo diffusion

for the model to produce the right behavior, specifically pointing

out the issue of relating steady-state force-velocity curves to dy-

namics. An asymptotic analysis of a model bearing many similar-

ities to our proposed model (but still with discrete motor num-

ber) can be found in McKinley et al. (2012) . The authors include

cargo diffusion in a stochastic differentialequation description and

note that motor dynamics slow compared to fast fluctuations in

the cargo velocity, which ultimately is an important ingredient of

our work. 

In this work, we present a new tug-of-war model of bidi-

rectional motor-mediated transport. Our proposed model contains

fundamentally different essential components than previous work.

Broadly, the proposed model is a mean-field model with unequally

distributed load. This differs from previous discrete motor, un-

equal load descriptions and therefore requires a different source

of noise to induce switching. By examining the force generation

of bound motors, we quantify the delayed response to instanta-

neous changes in the cargo velocity. We make an approximation

(and justify numerically) that this delay structure extends beyond

the scope of only bound motors, allowing for the use of a force-

velocity relationship to study the full system. This reduction leads

to a system of two “characteristic distances”, one for each motor

population. By symmetry, this two-variable system is collapsed to a

single dimension which is found to be metastable, with two states

corresponding to positive and negative net velocities, or bidirec-

tional motion. The noise that drives switching between these two

states is due to cargo diffusion (thermal fluctuations), an aspect

of this process previously noticed but under-emphasized until re-

cently ( Bouzat, 2016 ). 

Previous work has indeed illustrated the significance of mo-

tor number fluctuations ( Nadrowski et al., 2004 ). However, in this

present work, we choose to use a mean-field model to emphasize

the lack of necessity of discrete motor number for bidirectional-

ity. Our proposed model still incorporates binding and unbinding

dynamics and therefore has the same mean behavior as a discrete

motor model, but lacks the noise associated with discrete events.

The only remaining noise source is then cargo diffusion, which we

show to be sufficient for bidirectionality. The difference in mag-

nitudes between the fluctuations due to motor number and cargo

diffusion is difficult to quantify due to the fundamental difference

in structure. In Guérin et al. (2011a) , the authors find that motor

number fluctuations can result in an effective diffusion when the

number of motors involved in transport is large. 

A characteristic quantity in validating bidirectional transport

models is the reversal or switching time of the system: the time

between runs of each direction. In our model, the correlation struc-

ture of the effect of noise on each population allows for the reduc-

tion to an invariant manifold and consequently, a one dimensional

mean first passage time problem in a double-well potential. Classi-

cal tools can then be used to numerically solve and analytically ap-
roximate the corresponding boundary value problem. The switch-

ng time is considered as a function of the cargo drag coefficient,

hich leads to complex behavior as the wells steepen but diffusion

trengthens as the drag decreases. Ultimately, the mean switching

ime is found to be non-monotonic in the cargo drag coefficient,

 feature not expected for switching due to motor dynamics. This

on-monotonicity provides an experimental test to validate (or re-

ute) our diffusion-driven switching hypothesis. 

. Methods 

.1. Model formulation 

Consider a cargo being pulled by two different populations of

otors, denoted + and −. Let m 

±( x, t ) be the density of type +
r − motors at time t and stretched from their unstretched dis-

ance x units. The + or − labeling of the motor families denotes

heir preferred directionality. That is, m 

+ corresponds to the den-

ity of motors preferring to walk in the positive direction (e.g. ki-

esin) and m 

− the density of motors preferring to walk in the neg-

tive direction (e.g. dynein) as seen in Fig. 1 . Although the neg-

tively oriented motors are depicted as dynein in the figure, this

eed not be the case. The negatively oriented motors could be,

or instance, another set of kinesin motors on an opposing micro-

ubule. The framework presented is sufficiently general to accom-

odate both. The evolution of each motor population is then de-

cribed by 

∂m 

±

∂t 
+ 

∂ 

∂x 

{[
w 

±(x ) − v (t) 
]
m 

±}
︸ ︷︷ ︸ 

stepping 

= 

(
M 

± −
∫ ∞ 

−∞ 

m 

±(x, t) d x 

)
�±

on (x ) 

︸ ︷︷ ︸ 
binding 

−�±
off

(x ) m 

±(x, t) ︸ ︷︷ ︸ 
unbinding 

. (1)

Although (1) appears as only one equation, m 

+ and m 

− each

ave their own equation that are structurally identical but may

ontain different parameters or functional forms. The quantity x ,

escribing the distance the motor is stretched from its unstretched
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isplacement is always measured with respect to the microtubule,

ven though each motor type walks in a different direction, see

ig. 1 . This choice of frame of reference is convenient, as it causes

he two equations to be structurally identical (as opposed to hav-

ng to reverse the sign of v ). 

It is worth noting that this PDE has been studied in other con-

exts and is referred to as the Lacker–Peskin PDE ( Srinivasan and

alcott, 2009 ), which is an extension of the Huxley crossbridge

odel ( Huxley, 1957; Keener and Sneyd, 2008 ). In that literature,

he particular form of the PDE is derived from the limit of a large

umber of discrete binding sites or a large number of motors.

owever, in the present context, it is well established that the

umber of motors is quite small ( Hendricks et al., 2010; Rai et al.,

013 ), hence a different interpretation for the mean-field model

ust be taken. If M = 1 , Eq. (1) is a Chapman–Kolmogorov equa-

ion, corresponding to the behavior of a single motor and describes

he probability of finding a motor stretched distance at x at time t .

his process is inherently random by the stochastic nature of the

inding dynamics, which is entirely accounted for in the binding

nd unbinding terms of the mean-field equation. 

Cargo mediated transport is a multi-motor phenomenon, and

onsequently, we are interested in the behavior of an ensemble

f motors. However, we point out the observation that (ignoring

rowding effects) the motors interact solely through the cargo. For

his reason, the motors can be treated as acting identically and in-

ependently, and hence, a mean-field model, which can be thought

f as a rescaling of the Chapman–Kolmogorov equation for a sin-

le motor, is applicable. To elaborate, we can regard m ( x, t ) as the

xpected (or mean, hence the name mean-field ) number of motors

ound at a given x and t . By construction, 0 ≤ ∫ m d x ≤ M , and

herefore the interpretation of M is a maximum number of motors

ound. Thus, we have effectively averaged over the stochasticity in

he binding dynamics to study a mean-field description of motor

nsembles. 

Before describing, in detail, each term in (1) , we state a driv-

ng assumption for several of the functional forms appearing in

he equation. The force generated due to the linker stretching is as-

umed to be Hookean, that is force ∼ kx , where k is the spring con-

tant or stiffness of the motor linker attachment to the cargo. The

orce-displacement curve of molecular motors has been studied ex-

erimentally ( Kawaguchi et al., 2003; Lindemann and Hunt, 2003 )

nd, although not perfectly linear, seems to be well-approximated

y this assumption. 

We now discuss each term of the equation in more detail.

roadly, the motor population can change in three ways: motors

tepping (walking), binding or unbinding. 

1. stepping : We assume that the rate of stepping for motors is

dependent on the force exerted on the motor, typically char-

acterized by a force-velocity curve. The force on the motor is

generated by the linker displacement x in a Hookean manner,

F = kx . Consequently, the walking rate of a motor is more natu-

rally thought of as a displacement -velocity relationship, which is

qualitatively the same as the force-velocity curve by the linear-

ity of the force generation. Denote this displacement-velocity

curve by w ( x ) and take it to be of the linear form 

w (x ) := −ax + b, (2)

where a > 0. At x = 0 , which corresponds to the motor be-

ing unstretched, the motor walks with some velocity b . For

the + directed motor, for instance, b > 0. As the motor walks

farther from its unstretched position ( x > 0), the force exerted

on it causes the velocity to decrease until it eventually stalls

at x stall := b / a . If x < 0, that is, the cargo is ahead in the di-

rection the motor seeks to walk, the velocity is assumed to be

greater as the linker exerts a force in the direction of motion of
the motor. If x > x stall , then the force exerted by the linker is

greater than the stall force, meaning the motor moves opposite

its preferred direction. 

Force-velocity relationships have been qualitatively observed

experimentally for kinesin ( Gennerich et al., 2007; Kunwar

et al., 2008 ) and dynein ( Belyy et al., 2014 ). One notable ob-

servation is a dramatic difference in behavior between mo-

tors in high ATP environments ( Carter and Cross, 2005; Viss-

cher et al., 1999 ) and ATP starved motors ( Gross et al., 2007;

Mitchell and Lee, 2009 ). For this work, we assume the motors

operate with sufficient ATP. The force-velocity curve is visibly

nonlinear, with main deviation from linearity occurring at su-

perstall forces, where motors velocities become negative (as in

this model), but with much smaller magnitude. Motors operat-

ing with an assisting force ( x < 0 in this model) also appear to

operate with sub-linear velocities. For this reason, a sigmoidal

form (due to its saturating behavior) is deemed appropriate and

used in a number of other modeling papers ( Bouzat, 2016; Kun-

war et al., 2011; McKinley et al., 2012; Müller et al., 2008 ).

However, in this work, we assume that motors operate in a

regime of the force-velocity curve that can be approximated by

its linearization. This assumption is explored and discussed fur-

ther in Section 3.1 . 

2. binding : The functional form of the binding term is set to be 

�on (x ) := k on δ(x ) , 

where k on is the constant describing the rate of binding of a

molecular motor to the cargo. The δ( x ) functional form corre-

sponds to the assumption that motors are initially unstretched

( x = 0 ) when they bind, thus only binding at x = 0 . That is, the

motors only bind in a non-force-producing state. This assump-

tion can be relaxed (and is for later numerical simulations) to a

Gaussian approximation of the delta function. 

3. unbinding : The unbinding rate of molecular motors has ex-

perimentally been found to be related to the force exerted on

them ( Kawaguchi et al., 2003; Kunwar et al., 2011 ), however

the nature of this dependency is complex and varies from mo-

tor to motor. Dynein is found to a have a catch-bond behav-

ior ( Kunwar et al., 2011; Nicholas et al., 2015 ). Both kinesin

( Andreasson et al., 2015 ) and dynein ( Nicholas et al., 2015 ) have

been observed to have asymmetric force dependence in their

unbinding. 

Due to the complexity and variation in unbinding dependence,

we take the simplest form that still behaves in a way that qual-

itatively matches experimental results, which is 

�off(x ) = k off exp 

{
k | x | 
F D 

}
, 

where again, the force exerted is assumed to be Hookean ( ∼
kx ), and independent of direction (hence the absolute value).

F D is a characteristic force fit to experimental observations, and

k off is the unstretched detachment rate. This form is often re-

ferred to as Bell’s Law, which is known to need corrections

in some scenarios ( Walcott, 2008 ). The overall behavior of this

function establishes that motors detach at a faster rate the far-

ther they are stretched due to the force exerted on their micro-

tubule binding sites. 

This functional form (or similar) has been used in other mo-

tor population models ( Srinivasan and Walcott, 2009; Walcott,

2008 ). In Kunwar et al. (2011) , the authors account for the

stalling of motors and the catch-bond behavior of dynein by

taking a non-monotonic dependence on the force. In our un-

binding rate, neither the catch-bond behavior nor is the asym-

metric dependence on force is included. The consequence of ex-

cluding these phenomena is purely quantitative, as they are not
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dramatic enough effects (in the regimes that motors operate for

transport) to produce a qualitative effect in our model. 

It is also worth noting that �off and �on have different units, as

the off-rate is multiplied by m , a motor density and the on-rate

is multiplied by a total number of motors ∫ m d x . 

We then can define the average force exerted by each motor

population, recalling the assumption of a Hookean force, 

F ±(t) := 

∫ ∞ 

−∞ 

k ±xm 

±(x, t) d x. (3)

This time-varying quantity requires knowledge of the full density

of motors m ( x, t ), which makes it difficult to study directly. 

2.2. Steady-state analysis 

This time-dependent force, described by (3) is difficult to com-

pute in practice, so we turn our attention to the steady-state

force. We consider the steady state ( d m 

±/ d t = 0 ) and behavior of

(1) with some steady-state velocity ˜ v , which leads to the pair of

equations for the steady state densities ˜ m 

±

∂ 

∂x 

{[
w 

±(x ) − ˜ v 
]

˜ m 

±}
= 

(
M 

± −
∫ ∞ 

−∞ 

˜ m 

±(x ) d x 

)
�±

on (x ) 

−�±
off

(x ) ̃  m 

±(x ) . (4)

Exploiting the linearity of (4) , along with the partitioning na-

ture of the delta function, (4) can be solved analytically, resulting

in a solution with an integrable singularity at the stall distance de-

pendent on the velocity 

x stall := 

b − ˜ v 
a 

. 

For details of this calculation, see Supplementary Section S1 . This al-

lows us to define the steady state force exerted by each population

of motor 

˜ F ±( ̃ v ) := 

∫ ∞ 

−∞ 

k ±x ̃  m (x ; ˜ v ) d x, (5)

where we parameterize this force as a function of the steady state

cargo velocity ˜ v which appears in (4) . 

We now need an equation governing the cargo velocity, which

is determined by the forces exerted on the cargo 

M ̇

 v + γ v = 

√ 

2 γ k B T ξ (t) + forces exerted by motors . (6)

In (6) , M is the mass of the cargo, γ is the drag coefficient

of the cargo and ξ ( t ) is the white-noise process due to thermal

fluctuations (diffusion) of the cargo which satisfies 〈 ξ (t) ξ (τ ) 〉 =
δ(t − τ ) . The magnitude of these fluctuations is determined by the

fluctuation-dissipation theorem ( Gardiner, 2009 ). 

2.3. Forces exerted by motors 

A perhaps natural choice for the force terms in (6) could be the

steady-state force, ˜ F ±(v ) , found in (5) . The use of a force-velocity

relationship (which 

˜ F is) to study motors has a long history (e.g.

Huxley (1957) ) but there is a problem with this choice. Although

v is changing instantaneously, the position of the cargo is not. The

forces exerted by the motors are due to stretching of the linker

(determined by their displacement), which does not change instan-

taneously as the velocity changes. In other words, it is impossible

to completely infer dynamics from a steady-state force-velocity rela-

tionship. Thus, parameterizing the force with time-varying velocity

would not produce the physical behavior we desire. For this rea-

son, we turn to a simpler model to understand what to use for the

force terms in (6) that accounts for this issue. 

In Bouzat (2016) , the authors make the observation that includ-

ing cargo noise produces this described difficulty: motors should
ot react instantaneously to velocity and classical models produce

esults inconsistent with experimental observations if this is the

ase. To overcome this issue, the authors hypothesize that the mo-

ors respond to a time-windowed-average force, suggesting some

memory” property of the motors. Here, we directly compute a

hysiological, mechanistic delay stemming from the stepping of

he motor, instead of a phenomenological “memory.”

.3.1. Ornstein–Uhlenbeck motivation 

To understand motor response to fluctuations in the cargo ve-

ocity, we now turn our attention the behavior of an ensemble of

 motors on a single run : after binding and before unbinding. This

ocus stems from the observation that force generation can only

ccur while the motors are bound. The dynamics of force genera-

ion are of interest as these dictate the cargo behavior. In McKinley

t al. (2012) , the authors also study the behavior of motors without

inding dynamics and find that multiple motors can actually pro-

uce a lower cargo velocity than a single motor. However, in our

odel, we reiterate that the motors act identically and indepen-

ently aside from interaction with the cargo, which is addressed

eparately. Hence, it is sufficient to describe the behavior of a sin-

le motor. Let p 1 ( x, t ) describe the probability density of finding a

otor stretched distance x from its unstretched position at time t

nd let x 1 ( t ) be the corresponding Langevin random process. 

The behavior follows almost identically with the mean-field

odel (1) , but now binding and unbinding can be neglected due

o the analysis only being of a single run. The only remaining dy-

amics are the motor stepping (still at its force dependent velocity

 ) and diffusion (the magnitude of which is lumped into a param-

ter D ). The resulting process is an Ornstein–Uhlenbeck process

ardiner (2009) , which can be described by the Langevin equa-

ion 

˙ 
 1 = [ w (x 1 ) − v (t) ] + 

√ 

2 D ξ (t) , 

r the corresponding Fokker–Planck equation 

∂ p 1 
∂t 

= − ∂ 

∂x 
{ [ w (x ) − v (t)] p 1 } + D 

∂ 2 p 1 
∂x 2 

. (7)

o quantify the motor’s ability to respond to instantaneous fluctu-

tions in the cargo velocity, we consider the mean position of a

otor while still attached, denoted μ1 , 

1 := 〈 x 1 (t) 〉 . 
rom the Fokker–Planck equation (7) , we find the relationship de-

cribing the temporal evolution of the mean of this process to be

assuming w is a linear function) 

˙ 1 = w (μ1 ) − v (t) . (8)

or details of the calculation, see Appendix A . 

However, again recalling the assumption of a Hookean force

that is, force from a single motor stretched distance x 1 is kx 1 ),

he average force exerted by a single motor under evolving under

his process with density p ( x 1 , t ) is then 

 1 = k 

∫ ∞ 

−∞ 

x 1 p(x 1 , t) d x 1 = kμ1 . 

nd, since we have M motors in our ensemble, the total average

orce is immediate from linearity 

 tot = Mkμ1 . (9)

n other words, for a bound ensemble of motors , the mean force

xerted can be parameterized by the mean distance stretched μ,

here μ “tracks” the velocity through (8) . This illustrates that

he magnitude of the delay in motor response to fluctuations in

argo velocity is determined by the motor velocity. In other words,

hanges in force are only due to changes in displacement, not
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elocity. This resolves the aforementioned issue about the force

hanging instantaneously. Now, the mean force tracks, with some

elay as determined by (8) , the velocity and evolves continuously. 

.3.2. Force evolution approximation 

The previous calculation showed that while still attached, the

ean force generation for a population of motors could be col-

apsed down to a single parameter μ1 . However, relating the

ean-field model to this single-run analysis presents an obvious

ssue: how to account for binding dynamics? We now make the

ajor approximation of the paper: even with binding and unbind-

ng, the mean force generated by each population of motors can

e collapsed to a single parameter μ (for each population) with

 similarly structured delay. This leads us to the set of equations

with one motor family for illustration) 

 ̇

 v + γ v = 

ˆ F (μ) + 

√ 

2 γ k B T ξ (t) , ˙ μ = w (μ) − v . (10)

We assume the cargo velocity v fluctuates with the forces ex-

rted on it, but the force exerted by the motors is not directly

rescribed by the current v but rather some parameter μ which

racks v with a delay. We note that, in the previous section, we

ave proven that this delay structure exists while the motors are

ttached. However, we posit that this delay structure is still ap-

ropriate even when binding dynamics are incorporated because

orce generation on the cargo requires the motors to be attached.

n the previous analysis, μ had a physical meaning: the average

istance a motor is stretched. However, we lose this meaning and

onsider μ a “characteristic distance.” The force exerted by these

otors is also no longer Mk μ1 because not all motors are bound

t any given time, so we give the force a general form 

ˆ F (μ) that

s specified later. It is also important to reiterate that (10) is writ-

en for a single parameter μ, meaning a single motor population

o demonstrate the structure but we later incorporate parameters

1 , μ2 , one for each population. 

The particular choice of the parameterized force ˆ F j (μ) (for j =
 , 2 , corresponding to each population) must not neglect unbind-

ng and binding of the motors and must account for the fact that

ot all motors are bound at a given time. We conjecture that a

ufficient approximation is the steady-state force ˜ F ( ̃ v ) , originally

arameterized by a steady-state cargo velocity ˜ v , described by (5) . 

It does not seem immediately clear how to construct a map-

ing between a value of μ and 

˜ v to plug into ˜ F . We recall that
˜ 
 was computed assuming the cargo velocity ˜ v was fixed (in

teady-state), whereas the true quantity v ( t ) is constantly fluctu-

ting and never in steady-state. Utilizing the fact that ˜ v corre-

ponds to steady-state, we can construct a mapping between μ
nd 

˜ v by ensuring that the equilibria of our approximation match

he equilibria of the original system. That is, if we are in steady-

tate, ˙ μ = 0 and consequently 

˙ = 0 = −aμ + b − ˜ v ⇒ 

˜ v = −aμ + b. 

his then provides a mapping between a steady-state cargo veloc-

ty ˜ v and a particular μ value. Hence, we can now evaluate our

orce as a function of μ

ˆ 
 j (μ j ) = 

˜ F j (−a j μ j + b j ) . (11)

e reiterate that this approximate system is still inherently out-

f-equilibrium, but now, by construction, has equilibria that match

he original model since ˙ μ = 0 corresponds to a particular ˜ v , a

teady-state velocity from which the force was originally com-

uted. 

In other words, the motors track the steady state force-velocity

urve ˜ F with some delay. This particular choice of the force struc-

ure allows for the complexity of the mean-field model, including

ll binding and unbinding to be embedded into the ˜ F (μ) terms.

owever, the dynamics of the reduced “characteristic distance”
odel are easier to study due to being an ordinary differential

quation rather than a partial differential equation. Our analysis

hows that this delay structure is exact for bound motors and this

pproximation posits an extension of the structure to account for

inding and unbinding. We explore the validity of this approxima-

ion numerically in Section 3.2 . 

.4. Full model 

The parameter regime we are considering deals with cargo

ith negligible mass, thus suggesting we are in a viscous or near-

iscous regime. Exploiting this fact, we can perform an adiabatic

quasi-steady state) reduction on (10) to eliminate v . For details

f this calculation, see Supplementary Section S3 . The result of per-

orming this reduction (with a single motor population) is 

˙ = w (μ) −
ˆ F (μ) 

γ
+ 

√ 

2 k B T 

γ
ξ (t) , (12)

r equivalently, in Fokker–Planck form 

∂ p 

∂t 
= − ∂ 

∂μ

{
w (μ) − 1 

γ
ˆ F (μ) 

}
+ 

k B T 

γ

∂ 2 p 

∂μ2 
. (13) 

One important note from the calculation detailed in Supplemen-

ary Section S3 is that although v is eliminated from the system, v

elaxes quickly to a Gaussian centered around 

ˆ 
 ∼ ˆ F (μ) /γ , (14) 

hus the value of μ directly determines the (mean) velocity of the

argo at any time. 

Combining all of the previous observations, we now propose

he full model. In the derivation of (12,13) , only one motor popula-

ion was considered, but in bidirectional transport, there are two

opulations evolving separately, resulting in two equations with

dentical structure but different parameters. From this, we get the

ull model 

˙ 1 = −a 1 μ1 + b 1 − 1 

γ
{ F 1 (μ1 ) + F 2 (μ2 ) } + 

√ 

2 k B T 

γ
ξ (t) , 

˙ 2 = −a 2 μ2 + b 2 − 1 

γ
{ F 1 (μ1 ) + F 2 (μ2 ) } + 

√ 

2 k B T 

γ
ξ (t) . (15) 

ote that we have switched the two populations to labels j = 1 , 2

nstead of + / − and dropped the hat notation from 

ˆ F j for nota-

ional convenience. Because the motor populations were originally

oupled through the forces, the force terms in (12,13) must be re-

laced with the sum of forces from each family, and consequently,

he Eqs. (15) are coupled. We have also used the functional form

f the motor force velocity curve w (x ) = −ax + b and that the net

orce exerted by the motors is simply the sum of the force exerted

y each population. 

To emphasize the ability of this model to produce bidirectional

otion without asymmetry between the motor populations, we

ake the parameters describing each of the populations to be the

ame (unless noted otherwise), described in Table 1 . These param-

ters are chosen as physiologically reasonable parameters in the

ange of reported values of both kinesin and dynein, taken from

unwar et al. (2008) , Schnitzer et al. (20 0 0) and Klumpp et al.

2015) . The viscosity of cytoplasm is reported to be higher than

ater ( Luby-Phelps, 20 0 0; Mitchell and Lee, 20 09 ). Although a po-

entially large viscosity is used in this work, any smaller would

nly make the magnitude of the fluctuations larger, further mag-

ifying the importance of cargo diffusion. 

.5. Dimensional reduction 

An important observation must be made about the noise struc-

ure of (15) : the white noise term in each equation is exactly the
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Table 1 

“Typical” motor values used for both populations of motors in the symmetric case of the mean field model. Values 

used are within reported ranges of kinesin and dynein. 

F stall [pN] v 0 
[
nm · s −1 

]
k off

[
s −1 

]
| F d | [pN] k on 

[
s −1 

]
M k 

[
pN · nm 

−1 
]

γ
[
pN · s · nm 

−1 
]

5 10 0 0 1 1 5 10 0.4 0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i  

r  

t  

p  

e  

v  

f  

h  

s  

c  

t  

t  

o  

m  

f  

q  

s  

s  

m  

g  

m  

q

3

 

s  

o  

W  

(  

t  

a  

t  

t  

t  

f  

u  

(  

o  

e  

μ
 

t  

o  

t  

i  

t  

d  

l  

f  

5  

a  

i  

a  

t

 

a  

F  

s  
same (fully correlated). From a biophysical perspective, this is be-

cause the two motors feel the same fluctuations from the cargo

diffusion. Hence, this is truly a one-dimensional diffusion rather

than two dimensional as it currently appears. The Fokker–Planck

equation corresponding to the system (15) has a non-invertible dif-

fusion tensor, which further illustrates this point. To make the one-

dimensional structure more apparent, we perform a change of vari-

ables, taking 

ζ := μ1 + μ2 , η := μ1 − μ2 

Under this coordinate change, the system (15) becomes, abbreviat-

ing D := k B T / γ

˙ ζ = −a 1 
2 

(ζ + η) + b 1 − a 2 
2 

(ζ − η) + b 2 − 2 

γ

∑ 

j 

F j + 2 

√ 

2 D ξ (t) 

˙ η = −a 1 
2 

(ζ + η) + b 1 + 

a 2 
2 

(ζ − η) − b 2 . 

By taking the two populations to be symmetric, which corresponds

to a 1 = a 2 = a and b 1 = −b 2 = b, the η equation becomes 

˙ η = −aη + 2 b, 

which has an invariant manifold described by ˜ η = 2 b/a . Since the

equilibria of the system must lie on this invariant manifold, all

dynamics of interest evolve on the manifold and consequently re-

duces the problem to the one-dimensional evolution 

˙ ζ = −aζ − 2 

γ

[
F 1 

(
ζ + ˜ η

2 

)
+ F 2 

(
ζ − ˜ η

2 

)]
+ 2 

√ 

2 D ξ (t) , (16)

where again, ˜ η = 2 b/a . 

Thus, we have fully reduced the dynamics of the system to a

single time-varying quantity ζ , which again does not seem to have

a physical meaning but can be thought of as the characteristic dis-

tance of the system. Although a considerable number of reductions

have been made, the physical behavior of the system is still recov-

erable by recalling that the instantaneous mean cargo velocity, ˆ v ,
of the system can be recovered from (14) . In other words, ζ ( t ) is

a proxy for ˆ v (t) which is the biophysical quantity of interest. It is

worth noting that the analysis exploits the existence of an invari-

ant manifold, but it does not seem to be the case that such a mani-

fold exists if the populations are asymmetric. Hence, the asymmet-

ric population problem is considerably more difficult to study (as

only Monte Carlo simulations seem to be feasible) and not within

the scope of this work. 

3. Results 

3.1. Linear motor force–velocity curve 

We briefly explore the consequences of approximating the mo-

tor force-velocity curve w ( x ) as a linear function described in (2) .

Recall that w ( x ) is really a displacement -velocity curve but force

generation is assumed to be Hookean, so the qualitative shape re-

mains the same as the force-velocity curve. We reiterate that a sig-

moidal force-velocity relationship seems to be in closer agreement

to experimentally observed measurements and used it on other

models. However, we posit that the motors operate primarily in

a region of the force-velocity curve that can be approximated by
ts linearization. To assess the validity of this approximation, we

elaxed the assumption of linearity on w ( x ) and changed the func-

ional form to be of the form w̄ (x ) = α0 + α1 tanh (α2 (x − α3 )) , a

articular sigmoidal function utilized in previous work ( McKinley

t al., 2012 ). We then compare the steady-state ensemble force-

elocity described by (5) produced by the linear w ( x ) and two dif-

erent parameter choices of the sigmoidal form that vary only by

ow quickly they saturate. The result of this comparison can be

een in Fig. 2 . From this figure, we can see that the force-velocity

urves produced for the ensemble (on the right) vary very lit-

le when the form of w ( x ) is changed. There is excellent qualita-

ive agreement and even good quantitative agreement, seeming to

nly differ for sufficiently large velocities outside the scope of the

odel. Thus, we conclude the use of the linearized w ( x ) is suitable

or the analysis, particularly noting that ˜ F is the effectively only

uantity used from the mean-field model and remains virtually the

ame. We conjecture this result can be interpreted intuitively, as

uperstall velocities are larger in magnitude by our approximation,

eaning that the motors relax back to stall faster and therefore

enerate a smaller force due to displacement. This is offset by the

otors unbinding less rapidly (due to a lower force), and conse-

uently the net force generated is approximately the same. 

.2. Force delay approximation 

The form of the system (10) is an approximation which de-

cribes a delay structure, where the force generated by a family

f motors can be parameterized by a single dynamic quantity, μ.

e prove this to be the case while the motors are bound with

9) and (12) , but the heart of the approximation is that this ex-

ends to when binding dynamics are incorporated. We posit that

 sufficient approximation to the instantaneous force generated is

he steady-state ensemble force ˜ F ( ̃ v ) with a particular mapping be-

ween μ and 

˜ v described by (11) . We seek to assess the validity of

he collapse of the force generated by the mean-field equation to a

orce parameterized by μ. Specifically, we compare numerical sim-

lations of the full mean-field model (1,3) and the reduced model

10) . This numerical simulation is not an assessment of the validity

f the mean-field model, but rather the validity of the force gen-

rated by collapsing the PDE behavior down to a single ODE for

. 

We simulate only a single motor family ( + direction) and no

hermal noise for illustration. The approximation fundamentally is

ne of how motors (and the force generated by them) respond

emporally, so a numerical experiment is performed by applying

nstantaneous external forces to both the mean field model of mo-

ors and the reduced model, both of which have cargo dynamics

etermined by (6) . Both models are started at the completely un-

oaded state and run to equilibrium. Once at equilibrium, a -5 pN

orce (and later + 5 pN) external force is applied to the cargo for

 ms and then removed. The mean-field PDE was simulated using

 Lax–Wendroff scheme and the remaining ODEs are computed us-

ng a Runge–Kutta 4(5) scheme. The dynamics of the force gener-

ted by the motor population and the resulting cargo velocity are

racked and shown in Fig. 3 . 

From Fig. 3 we are able to make a number of observations

bout the validity of the “characteristic distance” approximation.

or one, the equilibria of the full model and reduced model are the

ame, which is immediate by the choice of (11) , but also indicates
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Fig. 2. a: the linear form (green, solid) of the displacement-velocity relationship of individual motors w ( x ) used throughout the paper and two different sigmoidal versions 

for comparison (dotted). b: the resulting steady-state force-velocity curves for the ensemble of motors described by (5) for the different choices of w ( x ). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. A numerical comparison of the forces and cargo velocity generated by the full mean field motor model ( 1,3 ) with the “characteristic distance” approximation described 

by (10) for one motor population and no thermal noise. In both models, the evolution of the cargo velocity is described by (6) . External forces are applied to the cargo and 

removed to illustrate the ability of the reduced model to respond to temporal changes in force. 
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and reduced. 
hat the reduced and full models have agreement on long time

cales. As the external force changes instantaneously, both mod-

ls behave (quantitatively and qualitatively) similarly regardless of

he directionality of the force, and therefore, suggests there is also

greement on short time scales. Other external inputs (e.g. sinu-

oid) were also investigated and yielded similar results. Thus, we
ave collapsed the force generated by the PDE mean-field descrip-

ion of motors ( 1,3 ) into an ODE (10) in a “characteristic distance”

ariable and the approximation appears to be valid. We remind

he reader that the binding dynamics are built into the mean-field

tructure, and therefore are accounted for in both the full model
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Fig. 4. a: A typical simulation of (16) performed with the Euler–Maruyama scheme. The system notably switches between two configurations. b: A histogram of the values 

of the simulation, which demonstrates bimodality. 
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3.3. Metastable behavior 

We perform simulations of (16) with the parameters specified

in Table 1 with the Euler–Maruyama scheme ( Kloeden and Platen,

1992 ). The results of a typical simulation can be seen in Fig. 4 a .

From this simulation, we see a curious behavior: the characteristic

distance ζ switches between two configurations, or is said to be

metastable . Elaborating on this, ζ takes on values near some par-

ticular point and then, due to the noise of the system, randomly

switches to values centered around another point. The histogram

of ζ values during the simulation, which can also be seen in Fig. 4 b

is clearly bimodal, which is a characteristic sign of metastability.

Although the two peaks in the figure appear different, this is a

consequence of the short time for which the simulation was per-

formed. If more switches were recorded, the two peaks of the his-

togram would be identical due to the symmetric population as-

sumption, however this time frame was chosen to demonstrate the

time-scale on which switching occurs. 

The metastable behavior of the system is apparent from simu-

lations, but can be further elucidated. To do so, consider the cor-

responding Fokker–Planck equation to (16) , which describes the

probability density p ( ζ , t | ζ 0 , 0). That is, the probability density of

(16) given that it started at ζ 0 , which is described by 

∂ t p = −∂ ζ { A (ζ ) p } + 4 D∂ ζ ζ p, (17)

where we are abbreviating 

A (ζ ) := −aζ − 2 

γ

[
F 1 

(
ζ + ˜ η

2 

)
+ F 2 

(
ζ − ˜ η

2 

)]
, D := 

k B T 

γ
. 

(18)
Fig. 5. a: A bifurcation diagram (as a function of the cargo drag, γ ) for the system, wh

velocities by (14) . Dotted lines correspond to unstable equilibria and solid lines are stab

velocities, or bidirectional motion. b: the double-well potential structure (19) as a functio
A bifurcation diagram of the equilibria of A ( ζ ) is constructed by

arying γ , the drag coefficient. Since ζ is not the physical quantity

f interest, we translate the equilibria of ζ into the corresponding

ean cargo velocity ˜ v under the transformation described by (14) .

he resulting bifurcation diagram can be seen in Fig. 5 a. This figure

aptures exactly the phenomenon described as bidirectional motion

 Hancock, 2014 ). We see that for a robust range of γ , the system is

istable : there are stable positive and negative mean cargo veloci-

ies, which we will denote v + , v − respectively. In this same regime,

he zero velocity v 0 is unstable. Interestingly, in small window of γ
alues, the system is actually tristable : two new equilibria emerge

n a bifurcation and cause v 0 to turn stable. This may correspond to

he experimental observation ( Kunwar et al., 2011 ) that the system

an spend long periods of time in a “pause” state, also noting that

his same experimental work suggests velocities that agree with

hose predicted by our model. For large values of γ , the system

nly has one stable equilibrium, v 0 . 

From, Fig. 5 a, the tristable region in γ -space is fairly narrow.

t is possible that other parameters (or more detailed functional

orms) would allow for this region to be more robust, but this is

ot observed. In fact, increasing motor processivity by lowering the

aseline unbinding rate by an order of magnitude ( k off = 1 [s −1 ] →
 . 1 [s −1 ] ) resulted in a smaller region of tristability, but larger re-

ion of bistability. For this reason, we instead focus our study to-

ard the bistable region, where we study the time to switch be-

ween the positive and negative velocities. Then, the corresponding

otential can be defined by 

(ζ ) := −
∫ 

A (χ ) d χ. (19)
ich is computed from the equilibria of (18) and then translated into mean cargo 

le. In a wide range of γ , the system demonstrates a stable positive and negative 

n of the drag coefficient γ . As γ decreases, the wells get steeper and farther apart. 
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Fig. 6. Mean first passage times corresponding to the cargo switching directions. 

Two approaches to solving (22) are illustrated: a shooting technique, and the deep- 

well Arrhenius approximation. The results of an Euler-Maruyama simulation of 

(16) are also shown, where switching is considered passing through the hyperbolic 

point. 
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his potential U ( ζ ) can be plotted as a function of γ in the bistable

egion of Fig. 5 a and the result is seen in Fig. 5 b. From the figure,

e see that U ( ζ ) is a double-well potential. That is, there are two

istinct well locations and a peak in the center, all three of which

re roots of A ( ζ ). Denote the two well locations (stable fixed points

f A ( ζ )) as ζ S 1 and ζ S 2 , where ζ S 1 < ζ S 2 and the middle peak (a

yperbolic fixed point of A ( ζ )) as ζ H . 

The effect of the drag coefficient γ on the potential is non-

rivial. Particularly, as γ decreases, the wells of the potential U ( ζ )

eepen and split farther apart, which alone would suggest an in-

rease in time to switch. However, we later see that there is a

ounteracting effect in the strength of diffusion. 

.4. Mean first passage time analysis 

One natural quantity to study in bidirectional systems is the

ime to switch directions, or the reversal time. Because of the

ouble-potential well structure, this can be thought of as the mean

ime from one of the metastable points to the hyperbolic point,

rom which the system relaxes quickly to the other metastable

oint. Due to the symmetric motor population assumption, the

ime to switch states is independent of state. Thus, without loss

f generality, we compute the mean first passage time from ζ S 1 →
S 2 where, again, ζ S 1 < ζ H < ζ S 2 . 

The analysis of a mean first passage time in a one-dimensional

otential is classical ( Bressloff, 2014; Gardiner, 2009 ) and is briefly

ummarized here. Define G ( z, t ) to be the probability that the sys-

em described by (17) is in the leftmost potential well at time t

iven the initial state p(ζ , 0) = z. That is, the survival probability

ensity is described by 

 (z, t) := 

∫ ζH 

ζS1 

p(ζ , t | z, 0) d ζ . 

hen, let T ( z ) define the random variable describing the exit time

rom this potential well , which satisfies 

 [ T (z) ≤ t ] = 1 − G (z, t) . (20)

aking a derivative of (20) yields the density for exit time f ( z, t ) 

f (z, t) = −∂ t G (z, t) = −
∫ ζH 

ζS1 

∂ t p(ζ , t | z, 0) d ζ . 

rom this, we can define the mean first exit time from the poten-

ial well, starting at the point z by 

(z) := 〈 T (z) 〉 = 

∫ ∞ 

0 

t f (z, t ) d t = 

∫ ∞ 

0 

G (z, t ) d t . (21)

he survival probability G ( z, t ) satisfies the backward Fokker–

lanck equation ( Gardiner, 2009 ), which we can integrate and use

21) to yield the governing equation for the mean exit time density 

f the system starting at ζ0 = z, which is 

 (z) τ ′ + 4 Dτ ′′ = −1 , τ (ζH ) = 0 , τ ′ (ζS1 ) = 0 . (22)

he reflecting boundary at ζ S 1 is a consequence of starting the sys-

em in the well corresponding to this point, as any excursions to

he left will quickly relax back to the bottom of the well. The exit

ocation, the hyperbolic point ζ H , is an absorbing state due to the

ast relaxation to the other potential well once the system trans-

erses the peak between them. 

The boundary value problem (22) does not appear to be solv-

ble analytically due to the complexity of the force curves. How-

ver, τ ( z ) can be computed numerically in a straightforward man-

er (in a single integration) by exploiting the linearity of the sys-

em. Alternatively, a deep-well approximation can be made for the

otential and the classical Arrhenius formula can be used to ap-

roximate the mean first passage time. For details on both of these

ethods, see Appendix B . 
The two aforementioned techniques of evaluating τ ( ζ S 1 ) are

omputed and compared against Monte Carlo simulations of (16) ,

gain using the Euler-Maruyama scheme, where switching is con-

idered passing the hyperbolic point. The result of these techniques

an be seen in Fig. 6 . From this, we see that the shooting tech-

ique agrees with Monte Carlo simulations and the deep-well ap-

roximation is, although qualitatively similar, an overestimate of

he switching time. This result is intuitive, as in reality, the wells

ay not be sufficiently deep for the approximation to work well

nd therefore allow escape much faster. 

The behavior of the mean first passage times as a function

f the drag, γ is quite interestingly, non-monotonic. That is, as

he drag coefficient increases (which can be thought of as the

argo increasing in size), the time to switch initially goes up, but

hen ultimately goes back down. Mathematically, this complexity

tems from γ scaling both the potential and the diffusion strength

ifferently, explicitly in (18) . As γ decreases, the potential wells

eepen and spread apart as ∼ 1/ γ , but the strength of diffu-

ion simultaneously scales by ∼
√ 

1 /γ , which are competing ef-

ects for the switching time. The resulting behavior is therefore a

omplex competition between the scaling of the potential and the

oise strength, which produces non-monotonicity. Switching due

o motor binding and unbinding is not expected to demonstrate

his same non-monotonicity, as this is a feature of the mismatched

caling in the strength of the driving noise source (diffusion) and

he depth of the potential wells. In other words, γ does not scale

he driving noise source the same way for motor binding dynam-

cs. In other theoretical works that compute the switching time,

onotonicity is seen ( Guérin et al., 2011a; 2011b ). 

From a biophysical perspective, it should be noted that the

redicted mean first passage times are on the order of ∼ 0.5[s],

hich agrees with experimentally observed values ( Kunwar et al.,

011 ). This agreement supports the hypothesis that cargo diffusion

s the noise source for bidirectionality. The non-monotonicity of

he curve also provides a testable experimental prediction. That

s, bidirectional motion via molecular motors could be observed

or different cargo drag values (which, could be obtained by vary-

ng bead size). If the resulting mean time to switch directions is

ound to be non-monotonic, this would further strengthen our the-

ry that cargo diffusion, not motor binding dynamics are indeed

he noise source of bidirectionality. 

. Discussion & conclusion 

In this work, we have proposed a mean-field, unequally dis-

ributed load description of motor-mediated transport. To under-
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A (y ) τ + B (y ) τ = −1 , τ (x S ) = 0 , τ (x H ) = 0 . (B.1) 
stand the behavior of this complex model, we perform a series of

reductions. To justify the first reduction, we take an aside to study

only motors that are bound. Of these bound motors, we find that

the force generated displays a delay structure that collapses the di-

mensionality of the system greatly. We posit that, since bound mo-

tors are the only contributor to force generation, this delay struc-

ture is applicable to the full system even when binding dynamics

are incorporated. This allows for the reduction of a PDE describ-

ing each motor population to a single ODE for each, describing a

“characteristic distance.” Secondly, we use the small mass of the

cargo to perform an adiabatic (quasi-steady state) reduction of the

system. Due to a correlated noise structure and symmetry in the

system, the final result is a one-dimensional system, the value of

which is a proxy for the instantaneous cargo velocity. This result-

ing stochastic dynamics are observed to be “metastable”, switch-

ing between two distinct states exclusively due of cargo diffusion.

These states are associated with positive and negative cargo ve-

locities, meaning the system is bidirectional. To quantify the re-

versal time of the system, a mean-first passage time analysis is

performed and the results are explored as a function of the cargo

drag, an experimentally tunable quantity. We find that the pre-

dicted switching time agrees with experimental values and also

has a non-monotonic dependence on cargo drag, a claim that can

be experimentally verified. 

The use of a mean-field model in this work was not rigorously

justified, and could perhaps be made so by starting with a dis-

crete motor model akin to McKinley et al. (2012) . Despite this,

the mean-field model is able to accurately reproduce experimen-

tally observed ensemble switching times and mean velocities from

single-motor parameters. For this reason, we believe the mean-

field model to be an appropriate description of the system, but

the extent to which it is appropriate could be explored in future

work. One notable behavior of our mean-field model is the insta-

bility of the pause state for a wide range of parameter values. Intu-

itively, any small perturbation away from the pause state will pro-

duce asymmetry in the system and ultimately result in one motor

population “winning.” However, it is well established experimen-

tally that bidirectional systems spend a non-trivial amount of time

in the paused state ( Belyy et al., 2016; Derr et al., 2012 ), which has

also been reproduced in discrete motor simulations such as Müller

et al. (2008) . This perhaps gives a clue toward when the mean-field

model may break down. In the pause state, the motor number may

be so low that the mean-field model is not appropriate and con-

sequently, deviates from a discrete motor description. However, we

see that in some parameter regimes, the mean-field model is even

able to produce a metastable pause state (and consequently, a tri-

stable system). Hence, this conjectured relationship between the

use of a mean-field model and the instability of the pause state

must be explored further. 

The Ornstein-Uhlenbeck analysis for quantifying the ability of

a motor to react to instantaneous changes in cargo velocity is

of interest in other recent work ( Bouzat, 2016 ) and in general,

causes issue in any work that seeks to use a force-velocity rela-

tionship (which is inherently a steady-state analysis) to infer dy-

namics. In Bouzat (2016) , the authors hypothesize a “motor mem-

ory” and conclude that models only agree with experimental val-

ues appropriately if the motors react to a windowed-time-average

velocity. By examining only bound motors, we have quantified this

“memory” physiologically, noting a distinct delay structure. Be-

cause bound motors are the force-generators of the system, we

proposed a novel approximation to the full dynamics that satis-

fies the same delay structure, the validity of which was supported

by numerical simulations. A more elegant approach to this approx-

imation may be possible and could perhaps be related to the more

detailed analysis of bound motor dynamics found in McKinley et al.

(2012) . 
In Bouzat (2016) , the authors also cite the importance of cargo

iffusion in models producing results that match experimental

alues. In our work, we have further illustrated the importance

f cargo diffusion by illustrating its ability to produce qualitative

hanges in motor-mediated transport. Specifically, the fundamen-

al noise driving switching in our model is cargo diffusion, unlike

revious unequally distributed load models which depended on a

iscrete motor description. This raises the possibility of the impor-

ance of diffusion in other aspects of motor-mediated transport. 

Thus, we have illustrated that common features of previous

ork: discreteness of the motors, asymmetry of motor populations,

qually distributed loads are not necessary to produce a physiologi-

ally reasonable model of bidirectional motor transport. This raises

ncertainty of which key ingredients may be essential for tug-of-

ar, making it even more difficult to compare to the alternative

egulatory hypothesis of bidirectionality. However, we have pro-

ided an experimentally testable prediction of the reversal time as

 function of the drag coefficient, which can be tuned by the bead

ize in experimental setups. If indeed thermal noise is the driver

f this switching, then agreement with this experiment would help

trengthen the validity of this theory since this feature is not ex-

ected from motor binding dynamics as the driving noise source. 
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ppendix A. Ornstein–Uhlenbeck Mean Evolution 

In this section, we show that if the advection term of an

rnstein–Uhlenbeck has a time dependence, a differential equation

an be obtained for the mean of the process, demonstrating an ef-

ective delay. 

Consider a Fokker–Planck equation of the form 

 t p = −∂ x [ { w (x ) − v (t) } p ] + D∂ xx p. (A.1)

enote μ( t ) to be the mean of the process, that is μ = 〈 p〉 . Then,

e have: 

˙ = 

d 

d t 

∫ ∞ 

−∞ 

x p(x, t) d x = 

∫ ∞ 

−∞ 

x∂ t p d x. 

owever, we can use (A.1) to find that 

˙ = −
∫ ∞ 

−∞ 

x∂ x [ { w (x ) − v (t) } p ] d x + 

∫ ∞ 

−∞ 

xD∂ xx p d x, 

hich, after integration by parts, yields 

˙ = 〈 w (x ) 〉 − v . 
ensen’s inequality states that for a convex w 

 w (x ) 〉 ≥ w (〈 x 〉 ) , 
owever, if we assume w ( x ) is linear (as we have done in the

odel), then Jensen’s inequality attains equality and the result is 

˙ = w (μ) − v (t) . 

ppendix B. Methods for 1D MFPT Problems 

For the sake of generality, consider the one dimensional SDE 

 x = A (x ) d t + 

√ 

2 B (x ) d W, 

hich has a corresponding Fokker–Planck equation 

 t p = −∂ x { A (x ) p } + B (x ) ∂ xx p. 

e are assuming that A ( x ) has three fixed points, two stable and

ne hyperbolic, denote x S and x H . 

We are then interested in the mean first passage time starting

rom a point y , which we denote τ ( y ), and satisfies 

′ ′′ ′ 
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1. Shooting method 

In this section, we exploit the linearity of (B.1) to construct a

umerical shooting method for constructing a solution. First, we

rite the system as a first order system, by taking σ = τ ′ , 

τ ′ 
σ ′ 

]
+ 

[
0 1 

0 

A (x ) 
B (x ) 

][
τ
σ

]
= 

[
0 

− 1 
B (x ) 

]
, 

[
τ (x H ) 
σ (x S ) 

]
= 

[
0 

0 

]
. (B.2)

o construct a solution to (B.2) , we obtain two solutions of initial

alue problems of the same form and utilize the linearity of the

quation to solve the boundary value problem via superposition.

hus, consider the following two systems: 

p ′ 1 
p ′ 2 

]
+ 

[
0 1 

0 

A (x ) 
B (x ) 

][
p 1 
p 2 

]
= 

[
0 

− 1 
B (x ) 

]
, 

[
p 1 (x S ) 
p 2 (x S ) 

]
= 

[
0 

0 

]

q ′ 1 
q ′ 2 

]
+ 

[
0 1 

0 

A (x ) 
B (x ) 

][
q 1 
q 2 

]
= 

[
0 

0 

]
, 

[
q 1 (x S ) 
q 2 (x S ) 

]
= 

[
1 

0 

]

e now claim ϒ = 

[
τ σ

]T 
is a linear combination of P =

p 1 p 2 
]T 

and Q = 

[
q 1 q 2 

]T 
. In other words, there exists some

such that ϒ = P + γ Q . The value of γ is to be determined by

aking sure the right boundary condition is satisfied 

(x H ) = p 1 (x H ) + γ q 1 (x H ) = 0 ⇒ γ = − p 1 (x H ) 

q 1 (x H ) 
. 

hus, our mean first passage time from x S → x H is then 

(x S ) = p 1 (x S ) + γ q 1 (x S ) = γ . 

t is worth noting that this actually only requires a single ODE in-

egration, as Q is identically constant by construction with q 1 ≡ 1

nd q 2 ≡ 0, and consequently 

= −p 1 (x H ) . 

2. Arrhenius (deep well) approximation 

The deep-well approximation is a classical technique used to

ompute the mean first passage time from a potential well. Here,

e briefly summarize the technique but additional details can

e found in Gardiner (2009) and Bressloff (2014) . Following the

atter reference, define the potential function U 

′ ( y ) := −A ( y ), so

 = − ∫ 
A (y ) d y . After using an integrating factor and assuming B

s constant for simplicity, we have 

= 

1 

B 

∫ x 

x S 

e U ( x 
′ ) /B d x ′ 

∫ x ′ 

0 

e −U ′′ ( x ′′ ) /B d x ′′ , 

oting that we have also taken 0 < x S < x H for convenience.

ssuming the potential is deep-welled, the first integral is sharply

eaked arou nd x ′ = x H , where the second integral is slowly vary-

ng. For this reason, we can interchange the limits of the integral

o obtain 

= 

1 

B 

[∫ x H 

0 

e −U ( x ′′ ) /B d x ′′ 
][∫ x 

x S 

e U ( x 
′ ) /B d x ′ 

]
. 

ow, the first integral is dominated around x ′′ = x H , whereas the

econd is dominated around x ′ = x S so that the limits can be taken

o infinity with little error. Using the method of steepest descent

or simply, a Taylor expansion), we finally have the classical Arrhe-

ius formula 

∼ 2 π√ | U 

′′ (x H ) | U 

′′ (x S ) 
e (�U) /B , �U := U(x H ) − U(x S ) . 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.jtbi.2017.04.032. 
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