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Abstract

The time that it takes a diffusing particle to find a small target has
emerged as a critical quantity in many systems in molecular and cellular
biology. In this paper, we extend the theory for calculating this time to
account for several ubiquitous biological features which have largely been
ignored in the mathematics and physics literature on this problem. In
particular, we allow (i) targets to diffuse on the two-dimensional boundary
of the three-dimensional domain, (ii) targets to diffuse in the interior of
the domain, (iii) the diffusivities of the searcher particle and the targets
to stochastically fluctuate, (iv) targets to be stochastically gated, and (v)
the transition times between fluctuations in diffusivity and gating to have
effectively any probability distribution. In this general framework, we
analytically calculate the leading order behavior of the mean first passage
time and splitting probability for the searcher to reach a target as the
target size decays, which is the so-called narrow escape limit. To make
these extensions, we use a generalized Itô’s formula to derive a system of
coupled partial differential equations which are satisfied by statistics of
the process, where the size of the system and its spatial dimension can be
arbitrarily large. We apply matched asymptotic analysis to this system
and verify our analytical results by numerical simulation. Our results
reveal several new features and generic principles of diffusive search for
small targets.

1 Introduction

Over the past decade, there has been a surge of interest from mathematicians
and physicists in the so-called narrow escape problem (NEP) [34]. The NEP is
to determine the time that it takes a diffusing particle to find a small target on
the boundary or in the interior of a bounded domain with a reflecting boundary.
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Mathematically, the NEP typically takes the form of a Poisson equation in two
or three space dimensions with mixed Dirichlet/Neumann boundary conditions
and/or Dirichlet conditions on holes in the interior of the domain. One then
studies how the solution to this partial differential equation (PDE) diverges as
the size of the Dirichlet part of the boundary vanishes, which yields the behavior
of the mean first passage time (MFPT) for a diffusing “searcher” particle to
find a vanishingly small target. Much of the mathematical work has focused on
determining how the MFPT depends on geometric features, such as the shape
and size of the domain and the shapes and arrangement of the targets.

While the NEP dates back to Helmholtz [33] and Lord Rayleigh [54] in the
context of acoustics, the renewed interest stems primarily from applications to
molecular and cellular biology (and also ecology [41]). In essence, the NEP finds
broad application to biology since the timescale of many biological processes
depends on the arrival of diffusing ligands to small (often membrane-bound)
proteins (see [4, 16, 32, 34, 35] for more details).

However, previous work on the NEP has largely ignored several biological
features, and there is a growing body of experimental evidence indicating that
these features play important roles in certain physiological contexts. One such
feature is lateral diffusion, in which membrane-bound proteins diffuse on a two-
dimensional membrane surface [1]. From a mathematical standpoint, calculating
the time for a ligand diffusing in a three-dimensional domain to reach targets
diffusing on the two-dimensional boundary increases the spatial dimension of
the PDE describing the MFPT and effectively makes the diffusion operator
anisotropic. By assuming that the membrane-bound proteins are immobile,
previous work has avoided such mathematical complications. Nevertheless, the
lateral diffusion of membrane components is essential to a variety of physiological
processes [58].

Complicating the matter further, not only can target proteins diffuse, but
their diffusivity (diffusion coefficient) can stochastically fluctuate between two or
more discrete values. For example, AMPA receptors on the post-synaptic mem-
brane alternate within seconds between rapid diffusive and stationary behavior
[6], and LFA-1 receptors alternate between fast and slow diffusive states [22, 61].
For LFA-1 receptors, we further note that the random transition times between
diffusive states is not exponentially distributed [61]. Due to the prevalence of
fluctuating diffusivity in cell biology (sometimes called diffusion heterogeneity),
a number of statistical methods have recently been developed to analyze single
particle tracking data and detect changes in diffusivity [22, 40, 48, 49, 52, 60, 61].
These methods can also infer parameters, such as the state-dependent diffusiv-
ities, the number of diffusive states, and the transition rates between states.
Physically, distinct diffusion states typically model either (i) binding/unbinding
of the diffusing particle to other molecules that slow its diffusion or (ii) dis-
tinct conformational states of a large macromolecule with distinct diffusivities
associated with the effective sizes of the conformations (such as globular versus
fibrous states) [17, 31, 67].

One final complicating factor is that reactions may be stochastically gated.
That is, the diffusing ligand and/or the target may switch between discrete
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states, with reaction only possible in certain states. For example, enzymes
diffusing in the cytoplasm can switch between active and inactive states [53],
and transcription factors diffusing in the nucleus bind to DNA promoters with
a fluctuating affinity [3]. In the context of cellular transport, molecules with
diameter larger than a few nanometers must bind to a molecular chaperone
in order to move in and out of the nucleus [24, 63]. Another example is the
membrane transport of charged particles through voltage-gated or ligand-gated
ion channels that stochastically open and close. For ion channels, we note that
the random time between opening and closing is typically not exponentially
distributed [30].

Motivated by the aforementioned biological features, in this paper we make
several extensions to the NEP. We consider a searcher diffusing in a bounded
three-dimensional domain with a collection of small boundary targets which re-
side on the domain’s two-dimensional boundary and a collection of small interior
targets that reside in the three-dimensional domain. We make the following ex-
tensions, all of which are considered simultaneously. We first allow the boundary
targets to diffuse on the surface of the boundary. Second, we allow the interior
targets to diffuse in the domain. Third, we allow the diffusivities of the searcher
and the targets to stochastically fluctuate. Fourth, we allow the targets to be
stochastically gated, meaning they fluctuate between absorbing and reflecting
the searcher. Fifth, we do not restrict ourselves to exponentially distributed
waiting times between fluctuations in diffusivity and gating, as the random
times between these transitions can have any phase probability distribution [50].
Since phase distributions are dense in the set of nonnegative distributions [50],
our results hold for effectively any choice of transition time distributions. Fur-
thermore, we do not make any assumptions about the correlations between the
diffusive and gating states of the searcher and targets. In this general setup, we
analytically calculate the leading order behavior of the MFPT for the searcher
to find a target as the target size decays (the narrow escape limit). We also
calculate the leading order behavior of the so-called splitting probability, which
is the probability that the searcher reaches a given target before any other tar-
get. Our results hold for a general class of three-dimensional domains bounded
by a smooth level surface of an orthogonal coordinate system, which includes
ellipsoids and other solids of revolution [29].

To make these extensions, we use a generalized Itô’s formula to derive a
large system of coupled PDEs satisfied by the MFPT in a large number of
space dimensions. Depending on the number of targets and their fluctuations
in diffusivity and gating, the size of the coupled PDE system and its space
dimension can each be arbitrarily large. We then apply matched asymptotic
analysis to this PDE system in the limit that the targets are small. We derive a
similar system and perform similar analysis to analyze the splitting probabilities.
Our analytical results are verified by numerical simulations.

We now summarize a few salient features of diffusive search for small targets
that emerge from our analysis. First, compared to immobile targets, making the
boundary targets diffuse decreases the MFPT by a factor that depends nonlin-
early on the ratio of target and searcher diffusivities. Importantly, this factor is

3



independent of the geometry of the domain and the number of targets. There-
fore, this factor provides a simple way to quantitatively estimate how target
diffusion affects association rates in specific biophysical scenarios, merely re-
quiring one to know approximate target and searcher diffusivities. This analysis
also reveals how the diffusivity of a single target may increase the likelihood
that the searcher reaches that target before any other target.

Second, making interior targets diffuse also decreases the MFPT by a fac-
tor that depends on the ratio of target and searcher diffusivities. We find that
interior target diffusion decreases the MFPT more than boundary target dif-
fusion, which reflects the fact that interior targets diffuse in three-dimensions,
but boundary targets are restricted to a two-dimensional surface. Third, fluc-
tuations in searcher and interior target diffusivity can often be incorporated by
merely assuming a simple averaged diffusivity. In contrast, the effect of fluc-
tuations in boundary target diffusivity is more delicate. Finally, we find that
gating affects first passage statistics in a relatively straightforward manner that
depends only on the proportion of time that each gate is open.

The rest of the paper is organized as follows. Section 2 summarizes our main
results. In section 3, we derive the PDE boundary value problem satisfied by the
MFPT and employ matched asymptotic analysis to study its solution. We then
study the splitting probability in section 4. We illustrate our general results
in some specific examples in section 5, which reveals several general features of
diffusive search. We compare our analytical results to numerical simulations in
section 6. We conclude by discussing relations to previous work and highlighting
future directions.

2 Main results

Consider a searcher diffusing with diffusivity D0 > 0 in a bounded, three-
dimensional domain Ω ⊂ R3 with smooth boundary ∂Ω. Assume that most of
the boundary is reflecting, except for Nb ≥ 1 small, well-separated disk-shaped
boundary targets with O(ε) radii for ε � 1. It is known [19] that the MFPT,
T , for the searcher to reach a boundary target has the following asymptotic
behavior

T ∼ |Ω|
εD02π

∑Nb

n=1 C
b
n

, as ε→ 0, (2.1)

where Cb
1 , C

b
2 , . . . , C

b
Nb are the capacitances of the boundary targets, which

depend on their relative radii. If instead of boundary targets, the domain Ω
contains N i ≥ 1 small, well-separated interior targets with O(ε) diameters for
ε� 1, then it is known [18] that the MFPT for the searcher to reach an interior
target satisfies

T ∼ |Ω|
εD04π

∑N i

n=1 C
i
n

, as ε→ 0, (2.2)
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where C i
1, C

i
2, . . . , C

i
N i are the capacitances of the interior targets, which de-

pend on their shapes and relative sizes. We also note that the probability pn
that the searcher reaches the nth target before any other target is the ratio of
capacitances,

pn ∼
Can∑Na

k=1 C
a
k

, as ε→ 0, a ∈ {b, i}, (2.3)

for the case of either boundary targets (a = b) or interior targets (a = i) [18].
Equations (2.1), (2.2), and (2.3) assume that the searcher is initially outside an
O(ε) neighborhood of all the targets. It therefore follows that (2.1), (2.2), and
(2.3) are also valid assuming the searcher starts at uniformly distributed initial
location, since in that case the probability that the searcher starts in an O(ε)
of a target is O(ε).

We generalize these results to include the possibility that (i) the boundary
targets diffuse on the boundary ∂Ω, (ii) the interior targets diffuse in the domain
Ω, (iii) the searcher and target diffusivities stochastically fluctuate, and (iv) the
boundary and interior targets are stochastically gated, meaning they fluctuate
between absorbing and reflecting the searcher. When a target is absorbing,
we say it is open, and when it is reflecting, we say it is closed. We make no
assumptions on correlations between these stochastic fluctuations. That is, the
gating and diffusivity fluctuations can be independent, perfectly correlated, or
have some nontrivial correlations. We suppose the domain Ω ⊂ R3 is bounded
by a smooth level surface of an orthogonal coordinate system, which includes
ellipsoids and other solids of revolution [29].

To describe our results, let J(t) ∈ J be an irreducible continuous-time
Markov jump process on the finite state space J that governs the searcher and
target diffusivities and target gate states (open or closed). That is, each j ∈ J
corresponds to a searcher diffusivity D0(j) > 0, interior target diffusivities

Di
1(j), Di

2(j), . . . , Di
N i(j) ≥ 0,

boundary target diffusivities

Db
1 (j), Db

2 (j), . . . , Db
Nb(j) ≥ 0,

interior target gate states

Si
1(j), Si

2(j), . . . , Si
N i(j) ∈ {0, 1},

and boundary target gate states

Sb
1 (j), Sb

2 (j), . . . , Sb
Nb(j) ∈ {0, 1}.

For the gate states, Si
n(j) = 1 (Si

n(j) = 0) means that the nth interior target is
open (closed) when J(t) = j, and similarly for Sb

n(j). We note that any corre-
lations between diffusivity fluctuations and gating are encoded in the dynamics
of the jump process J(t). We emphasize that though the time between jumps
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of J(t) is exponentially distributed, by introducing intermediate states to J(t)
we can choose the time between changes in diffusivity and gating to have any
phase distribution, which are dense in the set of distributions (see section 3).
We further note that the state space of J can be quite large. For example, if
the searcher and targets each switch independently between K diffusivities, and
each target opens and closes independently, then the cardinality of the state

space is at least |J | ≥ 2N
i+Nb

K1+N i+Nb

.
In this general setup, we find that the MFPT has the following asymptotic

behavior

T ∼ |Ω|

ε
∑
j∈J γ(j)D0(j)

[
2π
∑Nb

n=1 C
b

n(j) + 4π
∑N i

n=1 C
i

n(j)
] , as ε→ 0, (2.4)

where {γ(j)}j∈J is the invariant measure of J(t) and

C
b

n(j) := Sb
n(j)Cb

n

√
1 +

Db
n(j)

D0(j)
, n ∈ {1, . . . , Nb},

C
i

n(j) := Si
n(j)C i

n

(
1 +

Di
n(j)

D0(j)

)
, n ∈ {1, . . . , N i}.

(2.5)

Equation (2.4) assumes that the searcher is initially outside an O(ε) neighbor-
hood of all the targets. Hence, (2.4) is also valid if the searcher starts at a
random initial location, as long as the probability that the searcher starts in an
O(ε) neighborhood of a target vanishes as ε → 0 (which includes the case of a
uniformly distributed initial location). We comment on the validity of (2.4) in
the limit of small or large boundary and interior target diffusivity in the Dis-
cussion below. We investigate the implications of (2.4) in several special cases
in section 5 below.

The parameters in (2.5) can be interpreted as the effective target capaci-
tances for each state j ∈ J . To see this, first note that the capacitance is zero
if the target is closed (Sb

n(j) = 0 or Si
n(j) = 0). Next, if a boundary target

diffuses with diffusivity Db
n(j) ≥ 0 while the searcher diffuses with diffusivity

D0(j), then the boundary target capacitance increases by the dimensionless
factor √

1 +Db
n(j)/D0(j) ≥ 1. (2.6)

Effectively, the surface diffusion of the boundary target causes it to occupy
a larger area of the boundary. Similarly, if an interior target diffuses with
diffusivity Di

n(j) ≥ 0 while the searcher diffuses with diffusivity D0(j), then the
interior target capacitance increases by

1 +Di
n(j)/D0(j) ≥ 1. (2.7)

Notice that the capacitance increase for a diffusing interior target is larger than
for a diffusing boundary target. This reflects the fact that diffusing bound-
ary targets are restricted to the two-dimensional boundary, whereas diffusing
interior targets diffuse in the three-dimensional domain.
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After interpreting (2.5) as effective target capacitances, the result in (2.4) is
quite intuitive. In particular, equations (2.1)-(2.2) imply that the MFPT should
be inversely proportional to the product of the searcher diffusivity and the sum
of the target capacitances. Equation (2.4) generalizes this point by averaging
over the diffusivity/gate states, j ∈ J , and using the effective capacitances in
(2.5).

Furthermore, we show that the probability that the searcher reaches the nth
boundary target before any other target is

pb
n ∼

2π
∑
j∈J C

b

n(j)

2π
∑
j∈J

∑Nb

n=1 C
b

n(j) + 4π
∑
j∈J

∑N i

n=1 C
i

n(j)
, as ε→ 0. (2.8)

Similarly, the probability that the searcher first reaches the nth interior target
is

pi
n ∼

4π
∑
j∈J C

i

n(j)

4π
∑
j∈J

∑Nb

n=1 C
i

n(j) + 4π
∑
j∈J

∑N i

n=1 C
i

n(j)
, as ε→ 0. (2.9)

Hence, (2.8)-(2.9) are analogous to (2.3) in that the splitting probability involves
the ratio of average effective capacitances. Again, (2.8) and (2.9) assume that
the searcher is initially outside an O(ε) neighborhood of all the targets (or the
probability that the searcher starts in an O(ε) neighborhood of a target vanishes
as ε→ 0).

3 Mean first passage time

As above, consider a searcher X(t) diffusing in a bounded, three-dimensional
domain Ω ⊂ R3. Assume that N i ≥ 0 interior targets labeled Y1, . . . , YN i(t) dif-
fuse independently in the domain Ω. In addition, assume that Nb ≥ 0 boundary
targets labeled Z1(t), . . . , ZNb(t) diffuse independently on the boundary ∂Ω.
To avoid trivialities, we assume that there is at least one target, N i +Nb ≥ 1.

3.1 Fluctuations in diffusivity and gating

As above, let J(t) ∈ J be a continuous-time Markov jump process controlling
the diffusivities and gate states. Let Q ∈ R|J |×|J | denote the infinitesimal
generator of J(t). That is, the off-diagonal entry Q(i, j) ≥ 0 of Q gives the rate
that J(t) jumps from state i ∈ J to state j ∈ J , and the diagonal entries Q(j, j)
are chosen so that Q has zero row sums. Let γ ∈ R1×|J | denote the invariant
measure of J(t), which means

γQ = 0 and
∑
j∈J

γ(j) = 1. (3.1)

We assume that J(t) is irreducible with a finite state space, and thus the ex-
istence and uniqueness of γ is guaranteed. We note that the property γQ = 0
plays a crucial role in our asymptotic analysis below.
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Since J(t) is a continuous-time Markov jump process, the time between
jumps of J(t) is necessarily exponentially distributed. However, the time be-
tween transitions in diffusivity or gating (opening and closing) can be chosen
from the class of probability distributions known as phase distributions. Since
the probability distribution of any nonnegative random variable can be arbi-
trarily well approximated by a phase distribution [50], our results hold for ef-
fectively any choice of transition time distribution. To make this generalization
to non-exponential transition times, one introduces a sequence (or network) of
intermediate states to J(t) so that J(t) must traverse these intermediate states
before a change in diffusivity or gating occurs (see [50] for details). We note
that this basic idea is similar to the well-known “linear chain trick” in ordinary
differential equation modeling [21, 36].

We follow [29] and assume that our domain is bounded by the level sur-
face of an orthogonal coordinate system. Specifically, we assume (µ, ν, ω) is an
orthogonal coordinate system in R3 such that fixing µ and varying ν ∈ [0, ν0]
and ω ∈ [0, ω0] leads to a smooth closed bounded surface in R3. We define the
domain Ω and its boundary ∂Ω by

Ω := {(µ, ν, ω) : µ ∈ [0, µ0), ν ∈ [0, ν0], ω ∈ [0, ω0]},
∂Ω := {(µ, ν, ω) : µ = µ0, ν ∈ [0, ν0], ω ∈ [0, ω0]}.

Observe that this implies that the derivative in the direction normal to the
surface ∂Ω is the derivative with respect to µ, denoted as ∂µ. We denote the
scale factors for this coordinate system by hµ(x), hν(x), hω(x) for x ∈ R3.

We note that this general class of domains includes ellipsoids and all axially
symmetric domains [29]. In the Discussion section below, we discuss extending
our results to other classes of domains.

The reader may find it useful to keep in mind the special case of a domain Ω
that is a sphere of radius R > 0, in which case our orthogonal coordinates are
the standard spherical coordinates; namely, (µ, ν, ω) = (r, θ, ϕ), (µ0, ν0, ω0) =
(R, π, 2π), and (hµ(x), hν(x), hω(x)) = (1, r, r sin(θ)).

In this orthogonal coordinate system, the position of the nth boundary tar-
get, Zn(t) = (µ0, νn(t), ωn(t)) ∈ ∂Ω, obeys the stochastic differential equations
(SDEs),

dνn(t) =
Db
n(J(t))

hµhνhω
∂ν

(hµhω
hν

)
dt+

√
2Db

n(J(t))

hν
dW(ν,n),

dωn(t) =
Db
n(J(t))

hµhνhω
∂ω

(hµhν
hω

)
dt+

√
2Db

n(J(t))

hω
dW(ω,n), n ∈ {1, . . . , Nb},

(3.2)

where {W(n,ν)}N
b

n=1 and {W(n,ω)}N
b

n=1 are independent standard Brownian mo-
tions. These SDEs can be derived from the formula for the Laplace-Beltrami
operator in the (µ, ν, ω) coordinate system (see (3.13) below).

The SDE describing the position of the searcher X(t) ∈ Ω ⊂ R3 is simplest
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to express in Cartesian coordinates,

dX(t) =
√

2D0(J(t)) dW0(t) + n(X(t)) dL0(t), (3.3)

where W0(t) is an independent R3-valued standard Brownian motion, n : ∂Ω 7→
R3 is the inner normal field, and L0(t) is the local time [38] of X(t) on ∂Ω.
The local time is the time that X(t) spends on ∂Ω. More precisely, L0(t) is
non-decreasing and increases only when X(t) is on ∂Ω and L0(0) = 0. The
significance of the local time term in (3.3) is that it forces X to reflect from ∂Ω
in the normal direction and thus ensures that X(t) ∈ Ω for all t ≥ 0. Similarly,
the interior target positions satisfy

dYn(t) =
√

2Di
n(J(t)) dWn(t) + n(Yn(t)) dLn(t), n ∈ {1, . . . , N i}, (3.4)

where Wn(t) is an independent R3-valued standard Brownian motion and Ln(t)
is the local time of Yn(t) on ∂Ω.

We point out that (3.2)-(3.4) imply that the paths of the searcher and the
targets are noninteracting. However, we emphasize that the diffusivities in (3.2)-
(3.4) can change when the Markov process J(t) jumps. Hence, the searcher
and target paths may be correlated since their diffusivities can depend on the
common jump process J(t).

3.2 PDE boundary value problem for the MFPT

We are interested in the first time that the searcher reaches a small neighborhood
of an open target. The region near the interior targets is the union,

∪N
i

n=1Ωεn(Yn(t)), (3.5)

where

Ωεn(y) := {x ∈ Ω : ε−1(x− y) ∈ Ωn}, (3.6)

where Ωn ⊂ R3 is a bounded, connected open set containing the origin with
smooth boundary for each n ∈ {1, . . . , N i} and ε � 1. We emphasize that
since the target positions are stochastic processes, the region in (3.5) is also
stochastic.

The region of the boundary near the boundary targets is

∪N
b

n=1Γ(Zn(t), εan), (3.7)

where for a point z = (µ0, νz, ωz) ∈ ∂Ω, we let Γ(z, εa) ⊂ ∂Ω denote the small
disk-like region,

Γ(z, εa) := {(µ0, ν, ω) : (hν(z)(ν − νz))2 + (hω(z)(ω − ωz))2 ≤ (εa)2}, (3.8)

and ε� 1. We note that if Ω is a sphere of radius R > 0, then Γ(z, εR) is the
spherical cap centered at z ∈ ∂Ω with curved surface area 2πR2(1 − cos(ε)) =
π(εR)2 +O(ε4).
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Let Si(j) ⊂ {1, . . . , N i} denote the set of indices of interior targets that are
open when J(t) = j ∈ J ,

Si(j) := {n : Si
n(j) = 1}.

For boundary targets, we similarly define Sb(j) := {n : Sb
n(j) = 1}. Define the

stopping time

τ := inf
{
t ≥ 0 : X(t) ∈

{
∪n∈Si(J(t)) Ωεn(Yn(t))

}
∪
{
∪n∈Sb(J(t)) Γ(Zn(t), εan)

}}
,

(3.9)

which is the first time the searcher reaches an open target (boundary or interior),
and the corresponding MFPT,

Tj(x,y, z) := E[τ |X(0) = x,Y(0) = y,Z(0) = z, J(0) = j], (3.10)

which is the MFPT conditioned on the initial conditions X(0) = x ∈ Ω,

Y(0) = (Y1(0), . . . , YN i(0)) = (y1, . . . , yN i) = y ∈ (Ω)N
i

,

Z(0) = (Z1(0), . . . , ZNb(0)) = (z1, . . . , zNb) = z ∈ (∂Ω)N
b

,

and J(0) = j ∈ J .
Putting these functions in a vector T(x,y, z) = {Tj(x,y, z)}j∈J ∈ R|J |, we

claim that

−1 =
(
L+Q

)
T, x ∈ Ω\{∪n∈Si(j)Ω

ε
n(yn)}, y ∈ (Ω)N

i

, z ∈ (∂Ω)N
b

, (3.11)

where 1 ∈ R|J | is the vector of all 1’s, L is the differential operator

L := D0∆x +

N i∑
n=1

Di
n∆yn +

Nb∑
n=1

Db
nLzn , (3.12)

where

D0 := diag(D0(j)) ∈ R|J |×|J |,

Di
n := diag(Di

n(j)) ∈ R|J |×|J |, n ∈ {1, . . . , N i}
Db
n := diag(Db

n(j)) ∈ R|J |×|J |, n ∈ {1, . . . , Nb}

are diagonal matrices, ∆x is the Laplacian acting on x ∈ R3, and Lz is the
Laplace-Beltrami operator

Lz :=
1

hµhνhω

[
∂ν

(hµhω
hν

∂ν

)
+ ∂ω

(hµhν
hω

∂ω

)]
(3.13)

acting on z = (µ0, ν, ω) ∈ ∂Ω. Furthermore, Tj satisfies

Tj = 0, x ∈
{
∪n∈Si(j) Ωεn(yn)

}
∪
{
∪n∈Sb(j) Γ(zn, εan)

}
,

∂µxTj = 0, x ∈ ∂Ω\
{
∪n∈Sb(j) Γ(zn, εan)

}
,

∂µyn
Tj = 0, yn ∈ ∂Ω, n ∈ {1, . . . , N i},

(3.14)
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where ∂µx denotes differentiation in x ∈ R3 in the direction normal to the
boundary ∂Ω.

We now use the generalized Itô’s formula to verify (3.11) and (3.14). Sup-
pose a function T(x,y, z) = {Tj(x,y, z)}j∈J satisfies (3.11) and (3.14). Let
T (x,y, z, j) denote Tj(x,y, z) and let E0 denote expectation conditioned on

X(0) = x, Y(0) = y, Z(0) = z, J(0) = j.

By the generalized Itô’s formula1, we have that

E0

[
T (X(min{t, τ}),Y(min{t, τ}),Z(min{t, τ}), J(min{t, τ}))

]
− T (x,y, z, j)

= E0

[ ∫ min{t,τ}

0

(L+Q)T (X(s),Y(s),Z(s), J(s)) ds
]

+ E0

[ ∫ min{t,τ}

0

∂µzT (X(s),Y(s),Z(s), J(s)) dL0(s)
]

+

N i∑
n=1

E0

[ ∫ min{t,τ}

0

∂µyn
T (X(s),Y(s),Z(s), J(s)) dLn(s)

]
.

(3.15)

By the definition of τ in (3.9) and the equations satisfied by T in (3.11) and
(3.14), we have that (3.15) reduces to

E0

[
T (X(min{t, τ}),Y(min{t, τ}),Z(min{t, τ}), J(min{t, τ}))

]
− T (x,y, z, j)

= −E0[min{t, τ}].
(3.16)

We then recover (3.10) after taking t → ∞ in (3.16) and using that τ < ∞
almost surely.

3.3 Matched asymptotic analysis of MFPT PDE

For ε � 1, we expect that T has a boundary layer for x in a neighborhood of

{∪N i

n=1yn} ∪ {∪N
b

n=1zn}, so we introduce the outer expansion

T = ε−1T (0)1 + T(1) + · · · , (3.17)

where T (0) ∈ R is a constant and T(1) ∈ R|J | is a function. Plugging (3.17) into
(3.11) and (3.14) yields

−1 = (L+Q)T(1), x ∈ Ω\{∪n∈Si(j){yn}}, y ∈ ΩN
i

, z ∈ (∂Ω)N
b

,

∂µx
T(1) = 0, x ∈ ∂Ω\{∪n∈Sb(j){zn}}

∂µyn
T(1) = 0, yn ∈ ∂Ω, n ∈ {1, . . . , N i}.

(3.18)

1Itô’s formula is the stochastic version of the chain rule [51]. The generalized Itô’s formula
applies to SDEs with random switching. For more information, see Lemma 3 on page 104 of
[59] or Lemma 1.9 on page 49 of [46].
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Comparing (3.18) to (3.14), notice that the targets have shrunk to points from
the perspective of the outer solution. We now approximate the solution to (3.11)
and (3.14) in the inner region near each yn and zn to determine the singular
behavior of T(1) as either x→ yn or x→ zn.

3.3.1 Behavior near boundary targets

To determine the behavior of the jth component of T(1) (denoted by T
(1)
j ) in

the inner region near zn = (µ0, νn, ωn) ∈ ∂Ω for n ∈ Sb(j), we introduce the
local coordinates

η := ε−1hµ(zn)(µ0 − µ), (3.19)

s1 := ε−1ξn(j)hν(zn)(ν − νn), (3.20)

s2 := ε−1ξn(j)hω(zn)(ω − ωn), (3.21)

where ξn(j) is the dimensionless constant

ξn(j) :=

√
D0(j)

D0(j) +Db
n(j)

∈ (0, 1]. (3.22)

We then define the inner solution,

w((η, s1, s2),y, z) :=

Tj
((
µ0 − ε(hµ(zn))−1η, νn + ε(ξn(j)hν(zn))−1s1, ωn + ε(ξn(j)hω(zn))−1s2

)
,y, z

)
.

We note that the local coordinates (η, s1, s2) and the inner solution w depend
on the indices n and j, but we have suppressed this dependence to simplify
notation.

By our choice of ξn(j) in (3.22), a straightforward calculation shows that
the jth component of the differential operator L in (3.12) expressed in local
coordinates is

(L)j = ε−2D0(j)
[
∂ηη + ∂s1s1 + ∂s2s2

]
+O(ε−1).

Therefore, substituting the inner expansion

w = ε−1w(0) + w(1) + · · · ,

into (3.11) yields the leading order inner problem,

(∂ηη + ∂s1s1 + ∂s2s2)w(0) = 0, η > 0, s1 ∈ R, s2 ∈ R,

∂ηw
(0) = 0, on η = 0, s2

1 + s2
2 ≥ (ξn(j)an)2,

w(0) = 0, on η = 0, s2
1 + s2

2 ≤ (ξn(j)an)2.

(3.23)

The matching condition is that the near-field behavior of the outer expansion
as x → zn must agree with the far-field behavior of the inner expansion as
ρ→∞, where

ρ :=
√
η2 + s2

1 + s2
2.

12



That is,

ε−1T (0) + T
(1)
j + · · · ∼ ε−1w(0) + w(1) + · · · , as x→ zn, ρ→∞. (3.24)

Hence, the leading order matching condition is that w(0) ∼ T (0) as ρ → ∞.
Therefore, we set w(0) = T (0)(1 − wc), where wc satisfies the well-known elec-
trified disk problem from electrostatics,

(∂ηη + ∂s1s1 + ∂s2s2)wc = 0, η > 0, s1 ∈ R, s2 ∈ R,
∂ηwc = 0, on η = 0, s2

1 + s2
2 ≥ (ξn(j)an)2,

wc = 1, on η = 0, s2
1 + s2

2 ≤ (ξn(j)an)2,

wc → 0, as ρ→∞.

(3.25)

The solution wc is known explicitly [23], but we need only the far-field behavior,

wc ∼ ξn(j)Cb
nρ
−1, as ρ→∞, (3.26)

where Cb
n = 2an/π is the capacitance of a disk of radius an > 0. It follows that

w(0) ∼ T (0)
(

1− ξn(j)Cb
nρ
−1
)
, as ρ→∞. (3.27)

Plugging this into the matching condition yields that T
(1)
j has the following

singular behavior as x→ zn for n ∈ Sb(j),

T
(1)
j ∼ −ξn(j)Cb

nT
(0)[

(hµ(zn)(µ0 − µ))2 + (ξn(j)hν(zn)(ν − νn))2 + (ξn(j)hω(zn)(ω − ωn))2
] 1

2

.

(3.28)

The singular behavior in (3.28) can be written in distributional form as

∂µxT
(1)
j = −2πT (0)

∑
n∈Sb(j)

Cb
n

ξn(j)

δ(ν − νn)δ(ω − ωn)

hν(zn)hω(zn)
, x ∈ ∂Ω,

∂µyn
T

(1)
j = 0, yn ∈ ∂Ω, n ∈ {1, . . . , N i},

(3.29)

for each j ∈ J . In order to see that (3.29) is the distributional form of (3.28)
for the PDE (3.18), assume that a set of functions {fj}j∈J satisfy (3.18) and
(3.29). To determine the behavior of fj as x → zn ∈ ∂Ω for n ∈ Sb(j), we let
0 < ε̄� 1 and define

g((η̄, s̄1, s̄2),y, z) :=

fj
((
µ0 − ε̄(hµ(zn))−1η̄, νn + ε̄(ξn(j)hν(zn))−1s̄1, ωn + ε̄(ξn(j)hω(zn))−1s̄2

)
,y, z

)
,

for η̄ > 0, s̄1 ∈ R, s̄2 ∈ R. If we then expand g as g = ε̄−1g0 + g1 + · · · , it follows
from a calculation similar to the one that led to (3.23) that g0 satisfies

(∂η̄η̄ + ∂s̄1s̄1 + ∂s̄2s̄2)g0 = 0, η̄ > 0, s̄1 ∈ R, s̄2 ∈ R. (3.30)
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Furthermore, the following boundary condition follows immediately from (3.29)
and the definition of g,

∂η̄g((η̄, s̄1, s̄2),y, z) = ε̄−12πT (0)ξn(j)Cb
nδ(s̄1)δ(s̄2),

and therefore,

∂η̄g0 = 2πT (0)ξn(j)Cb
nδ(s̄1)δ(s̄2), η̄ = 0, s̄1 ∈ R, s̄2 ∈ R. (3.31)

The solution to (3.30) and (3.31) is

g0 = −T (0)ξn(j)Cb
nρ
−1.

Matching the far-field behavior of ε̄−1g0 with the near-field behavior of fj implies
that fj has the singular behavior in (3.28) as x→ zn.

3.3.2 Behavior near interior targets

To determine the behavior of T
(1)
j in the inner region near yn ∈ Ω for n ∈ Si(j),

we introduce the local coordinate

x̃ := ε−1(x− yn), (3.32)

and the inner solution

u(x̃,y, z) := Tj(yn + εx̃,y, z).

Expanding the inner solution,

u = ε−1u(0) + u(1) + · · · ,

and noting that ∆x = ε−2∆x̃ and ∆yn = ε−2∆x̃, we obtain the leading order
inner problem

∆x̃u
(0) = 0, x̃ /∈ Ωn,

u(0) = 0, x̃ ∈ Ωn.

The matching condition is

ε−1T (0) + T
(1)
j + · · · ∼ ε−1u(0) + u(1) + · · · , as x→ yn, |x̃| → ∞, (3.33)

and thus u(0) ∼ T (0) as |x̃| → ∞. Therefore, we write

u(0) = T (0)(1− uc), (3.34)

where uc satisfies

∆x̃uc = 0, x̃ /∈ Ωn,

uc = 1, x̃ ∈ Ωn,

uc → 0, as |x̃| → ∞.
(3.35)
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The problem (3.35) has been well-studied in the field of electrostatics, and
it is known that the solution has the following far-field behavior [37],

uc ∼ C i
n|x̃|−1 +O(|x̃|−2), as |x̃| → ∞, (3.36)

where C i
n is the capacitance of Ωn. The capacitance is determined by the shape

of Ωn and can be calculated analytically for certain shapes. For example, if Ωn
is a sphere of radius a > 0, then C i

n = a. See Table 1 in [18] for other examples
in which the capacitance can be calculated analytically.

Using the matching condition (3.33), the form of u(0) in (3.34), and the

far-field behavior in (3.36), it follows that T
(1)
j has the singular behavior

T
(1)
j ∼ −T

(0)C i
n

|x− yn|
, as x→ yn if n ∈ Si(j). (3.37)

3.3.3 Determining T (0)

Recall that γ ∈ R1×|J | is the invariant distribution of the jump process J(t)
and thus satisfies (3.1). Therefore, multiplying the PDE in (3.18) on the left by
γ yields the scalar PDE,

−1 =
∑
j∈J

γ(j)

D0(j)∆x +

N i∑
n=1

Di
n(j)∆yn +

Nb∑
n=1

Db
n(j)Lzn

T (1)
j , (3.38)

which is satisfied at x ∈ Ω\{∪n∈Si(j){yn}}, y ∈ ΩN
i

, z ∈ (∂Ω)N
b

. In light of

the singular behavior in (3.37), we decompose T
(1)
j into

T
(1)
j = T

(1)
j,reg −

∑
n∈Si(j)

T (0)C i
n

|x− yn|
, j ∈ J ,

where {Tj,reg}j∈J satisfy (3.38) at x ∈ Ω, y ∈ ΩN
i

, z ∈ (∂Ω)N
b

, and Tj,reg is
bounded as x→ yn for all n ∈ {1, . . . , N i}. Using the identity

∆a

(
|a− b|−1

)
= −4πδ(a− b), a, b ∈ R3,

it follows that

− 1 =
∑
j∈J

γ(j)

D0(j)∆x +

Nb∑
n=1

Di
n(j)∆yn +

N i∑
n=1

Db
n(j)Lzn

T (1)
j

− 4πT (0)
∑
j∈J

γ(j)
∑

n∈Si(j)

(D0(j) +Di
n(j))C i

nδ(x− yn), x ∈ Ω,y ∈ ΩN
i

, z ∈ (∂Ω)N
b

.

(3.39)
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Integrating (3.39) over Ω× (Ω)N
b × (∂Ω)N

b

yields

− |∂Ω|N
i

|Ω|N
b+1 =

∑
j∈J

γ(j)
[
D0(j)

∫
∆xT

(1)
j dx dy dSz

+

N i∑
n=1

Di
n(j)

∫
∆ynT

(1)
j dxdy dSz +

Nb∑
n=1

Db
n(j)

∫
LznT

(1)
j dxdy dSz

]
− 4πT (0)|∂Ω|N

i

|Ω|N
b ∑
j∈J

γ(j)
∑

n∈Si(j)

(D0(j) +Di
n(j))C i

n,

(3.40)

where dSz = dSz1 · · · dSz
Nb

and dSzn = hν(zn)hω(zn)dωn is the surface ele-
ment. Now, the divergence theorem implies that∫

Ω

∆xT
(1)
j dx =

∫
∂Ω

∂µx
T

(1)
j dSx,∫

Ω

∆ynT
(1)
j dyn =

∫
∂Ω

∂µyn
T

(1)
j dSyn , n ∈ {1, . . . , N i},

(3.41)

and ∫
∂Ω

LznT1 dSzn = 0 n ∈ {1, . . . , Nb}, (3.42)

since L is the Laplace-Beltrami operator and ∂Ω is a closed manifold. Combining
(3.40) with (3.41)-(3.42) and (3.29) yields

T (0) = |Ω|

∑
j∈J

γ(j)
[
2πD0(j)

∑
n∈Sb(j)

Cb
n

ξn(j)
+ 4π

∑
n∈Si(j)

(D0(j) +Di
n(j))C i

n

]
−1

= |Ω|

∑
j∈J

γ(j)D0(j)
[
2π

Nb∑
n=1

C
b

n(j) + 4π

N i∑
n=1

C
i

n(j)
]
−1

,

(3.43)

where we have defined

C
b

n(j) := Sb
n(j)Cb

n

√
1 +

Db
n(j)

D0(j)
, n ∈ {1, . . . , Nb},

C
i

n(j) := Si
n(j)C i

n

(
1 +

Di
n(j)

D0(j)

)
, n ∈ {1, . . . , N i},

which can be interpreted as effective capacitances depending on the state j ∈
J . Combining (3.43) with (3.17) thus yields the leading order MFPT for the
searcher to find an open target, assuming the particle starts outside an O(ε)
neighborhood of every target. It follows that (3.43) is also the leading order
MFPT for a random initial location for the searcher, as long as the probability
that the searcher starts in an O(ε) neighborhood of a target vanishes as ε→ 0.
Of course, this includes a uniformly distributed initial location.
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4 Splitting probability

In the previous section, we calculated the expected amount of time it takes for
the searcher to find an open target. In this section, we calculate the probability
that the searcher first reaches a specific open target before reaching any other
open target. For concreteness, we calculate the probability that the searcher
first reaches boundary target n0 ∈ {1, . . . , Nb}. Calculating the probability
that the searcher first reaches a specific interior target is similar.

Recall the stopping time τ in (3.9) and define the splitting probability,

pj(x,y, z) := P
(
X(τ) ∈ Γ(Zn0

(τ), εan0
) |X(0) = x,Y(0) = y,Z(0) = z, J(0) = j).

Similar to the previous section, one can use Itô’s formula to show that the vector
p(x,y, z) = {pj(x,y, z)}j∈J satisfies

(L+Q)p = 0, x ∈ Ω\{∪n∈Si(j)Ω
ε
n(yn)}, y ∈ ΩN

i

, z ∈ (∂Ω)N
b

,

pj = 1, n0 ∈ Sb(j), x ∈ Γ(zn0
, εan0

),

pj = 0, x ∈ {∪n∈Sb(j),n6=n0
Γ(zn, εan)} ∪ {∪n∈Si(j)Ω

ε
n(yn)},

∂µx
pj = 0, x ∈ ∂Ω\

{
∪n∈Sb(j) Γ(zn, εan)

}
,

∂µyn
pj = 0, yn ∈ ∂Ω, n ∈ {1, . . . , N i}.

(4.1)

As in the previous section, we use the method of matched asymptotic expan-
sions to approximate p. In the outer region, we introduce the outer expansion,

p = p(0)1 + εp(1) + · · · ,

where p(0) ∈ R is a constant and p(1) ∈ R|J | is a function. Plugging this
expansion into (4.1) yields

(L+Q)p(1) = 0, x ∈ Ω\{∪n∈Si(j){yn}}, y ∈ (Ω)N
i

, z ∈ (∂Ω)N
b

,

∂µx
p

(1)
j = 0, x ∈ ∂Ω\{∪n∈Sb(j){zn}},

∂µyn
p

(1)
j = 0, yn ∈ ∂Ω, n ∈ {1, . . . , N i}.

(4.2)

To determine the behavior of the jth component of p(1) (denoted by p
(1)
j )

in the inner region near zn = (µ0, νn, ωn) for n ∈ Sb(j), we define the inner
solution,

w((η, s1, s2),y) :=

pj
((
µ0 − ε(hµ(zn))−1η, νn + ε(ξn(j)hν(zn))−1s1, ωn + ε(ξn(j)hω(zn))−1s2

)
,y
)
,

as a function of the local coordinates (η, s1, s2) in (3.19).
As above, substituting the inner expansion

w = w(0) + εw(1) + · · · ,
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into (4.1) yields the leading order inner problem,

(∂ηη + ∂s1s1 + ∂s2s2)w(0) = 0, η > 0, s1 ∈ R, s2 ∈ R,

∂ηw
(0) = 0, on η = 0, s2

1 + s2
2 ≥ (ξn(j)an)2,

w(0) = δnn0 , on η = 0, s2
1 + s2

2 ≤ (ξn(j)an)2,

(4.3)

where δnn0
= 0 if n 6= n0 and δn0n0

= 1.
Using the matching condition

p(0) + εp
(1)
j + · · · ∼ w(0) + εw(1) + · · · , as x→ zn, ρ→∞, (4.4)

we have that the leading order inner solution near zn is

w(0) = p(0) + (δnn0
− p(0))wc,

where wc is as in (3.25). Using (3.26), it follows that

w(0) ∼ p(0) + (δnn0 − p(0))ξn(j)Cb
nρ
−1, as ρ→∞. (4.5)

Plugging this into the matching condition yields that p
(1)
j has the following

singular behavior as x→ zn for n ∈ Sb(j),

p
(1)
j ∼

(δnn0
− p(0))ξn(j)Cb

n

[(hµ(zn)(µ0 − µ))2 + (ξn(j)hν(zn)(ν − νn))2 + (ξn(j)hω(zn)(ω − ωn))2]
1
2

.

(4.6)

To determine the behavior of p
(1)
j in the inner region near yn ∈ Ω for n ∈

Si(j), we define the inner solution

u(x̃,y, z) := pj(yn + εx̃,y, z).

where the local coordinate x̃ is as in (3.32). Expanding the inner solution,

u = u(0) + εu(1) + · · · ,

we obtain the leading order inner problem

∆x̃u
(0) = 0, x̃ /∈ Ωn,

u(0) = 0, x̃ ∈ Ωn.

Using the matching condition,

p(0) + εp
(1)
j + · · · ∼ u(0) + εu(1) + · · · , as x→ yn, |x̃| → ∞, (4.7)

it follows that

u(0) = p(0)(1− uc), (4.8)
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where uc satisfies (3.35). Using (3.36) and (4.7)-(4.8), it follows that p
(1)
j has

the singular behavior

p
(1)
j ∼

−p(0)C i
n

|x− yn|
, as x→ yn if n ∈ Si(j). (4.9)

As above, we multiply the PDE in (4.2) on the left by γ ∈ R1×|J | and write
the singular behavior in (4.6) and (4.9) in distributional form to obtain

0 =
∑
j∈J

γ(j)

D0(j)∆x +

N i∑
n=1

Di
n(j)∆yn +

Nb∑
n=1

Db
n(j)Lzn

 p(1)
j

− 4πp(0)
∑
j∈J

γ(j)
∑

n∈Si(j)

(D0(j) +Di
n(j))C i

nδ(x− yn), x ∈ Ω,y ∈ ΩN
i

, z ∈ (∂Ω)N
b

,

(4.10)

and

∂µx
p

(1)
j = 2π

∑
n∈Sb(j)

(δnn0
− p(0))

Cb
n

ξn(j)

δ(ν − νn)δ(ω − ωn)

hν(zn)hω(zn)
, x ∈ ∂Ω,

∂µyn
p

(1)
j = 0, yn ∈ ∂Ω, n ∈ {1, . . . , N i},

(4.11)

Integrating (4.10) and using the divergence theorem and (4.11) implies that

p(0) =

∑
j∈J γ(j)C

b

n0
(j)∑

j∈J γ(j)
∑Nb

n=1 C
b

n(j) + 2
∑
j∈J γ(j)

∑N i

n=1 C
i

n(j)
. (4.12)

A similar calculation shows that the probability of reaching interior target n0 ∈
{1, . . . , N i} before any other interior or boundary target converges as ε→ 0 to

2
∑
j∈J γ(j)C

i

n0
(j)∑

j∈J γ(j)
∑Nb

n=1 C
b

n(j) + 2
∑
j∈J γ(j)

∑N i

n=1 C
i

n(j)
. (4.13)

The expressions (4.12)-(4.13) for the splitting probabilities are valid when ε� 1,
assuming the searcher starts outside an O(ε) neighborhood of every target.
Therefore, (4.12)-(4.13) are also valid for a random initial location for the
searcher, as long as the probability that the searcher starts in an O(ε) neighbor-
hood of a target vanishes as ε→ 0 (which is the case for a uniformly distributed
initial location).

5 Examples

In this section, we apply our general results from the previous two sections to
several specific examples. In addition to illustrating our results, this section
reveals several general features of diffusive search for small targets.
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Example 1 (Boundary targets with constant diffusivity). Assume that there
are Nb = N > 0 boundary targets and no interior targets, N i = 0. If the targets
are immobile (Db

n = 0, n ∈ {1, . . . , N }) and always open, and the searcher has
constant diffusivity D0 > 0, then (3.43) implies that the MFPT for the searcher
to reach a target is

T ∼ |Ω|
2πεD0

∑N
n=1 C

b
n

, as ε→ 0,

which recovers a known result [29]. If we now suppose that each boundary target
diffuses with constant diffusivity D > 0, then (3.43) implies that the MFPT is

T ∼ ξ|Ω|
2πεD0

∑N
n=1 C

b
n

, as ε→ 0, (5.1)

where ξ is the dimensionless factor,

ξ :=

√
D0

D0 +D
∈ (0, 1). (5.2)

Hence, making the boundary targets diffuse has the relatively simple leading
order effect of shrinking the MFPT for immobile targets by the factor ξ ∈ (0, 1).

Next, suppose that the N boundary targets have potentially differing dif-
fusivities D1, . . . , DN . For simplicity, assume the targets have the same size
(an = a > 0, n ∈ {1, . . . , N }). Then, (4.12) implies that the probability that
the searcher first reaches boundary target n0 is

p ∼ (ξn0)−1∑N
n=1(ξn)−1

, as ε→ 0, where ξn :=

√
D0

D0 +Dn

. (5.3)

This equation reveals that differing surface diffusivity of targets could be a
mechanism for regulating the flux to each target.

Example 2 (Interior targets with constant diffusivity). Assume that there are
N i = N > 0 interior targets and no boundary targets, Nb = 0. If the targets
are immobile (Di

n = 0, n ∈ {1, . . . , N }) and always open, and the searcher has
constant diffusivity D0 > 0, then (3.43) implies that the MFPT for the searcher
to reach a target is

T ∼ |Ω|
4πεD0

∑N
n=1 C

i
n

, as ε→ 0,

which recovers a known result [18]. If we now suppose that each interior target
diffuses with constant diffusivity D > 0, then (3.43) implies that the MFPT is

T ∼ |Ω|
4πε(D0 +D)

∑N
n=1 C

i
n

=
ξ2|Ω|

4πεD0

∑N
n=1 C

i
n

, as ε→ 0, (5.4)
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where ξ is as in (5.2).
Interpreting the first expression in (5.4), we see that making the interior tar-

gets diffuse with diffusivity D > 0 is (to leading order) equivalent to making the
targets immobile and increasing the searcher diffusivity to D0 +D. Comparing
(5.1) to the second expression in (5.4), we see that making boundary targets
diffuse shrinks the MFPT by ξ, whereas making interior targets diffuse has the
stronger effect of shrinking the MFPT by ξ2. It is not surprising that making
interior targets diffuse has a stronger effect on the MFPT compared to making
boundary targets diffuse, since diffusing boundary targets are restricted to a
two-dimensional surface.

Analogous to Example 1, suppose the N interior targets have potentially
differing diffusivities D1, . . . , DN , and for simplicity, assume the targets have
the same size and shape (Ωn = Ωm ∈ R3 for all n,m ∈ {1, . . . , N}). Then,
(4.12) implies that the probability that the searcher first reaches interior target
n0 is

p ∼ (ξn0
)−2∑N

n=1(ξn)−2
, as ε→ 0, (5.5)

where ξn is as in (5.3). Comparing (5.5) to (5.3), we see that differing interior
target diffusivities have a stronger effect on splitting probabilities compared to
differing boundary target diffusivities.

Example 3 (Fluctuating diffusivity and searcher/target correlations). Assume
that there is one boundary target and zero interior targets, and that the bound-
ary target is always open. Suppose that the boundary target diffusivity fluctu-
ates between slow and fast diffusivities, D− < D+, and similarly suppose that
the searcher diffusivity fluctuates between D−0 < D+

0 . For simplicity, assume
that the target and the searcher each spend an equal proportion of time in their
respective slow and fast states. In order to minimize the MFPT, how should
the fluctuations in diffusivity be correlated? That is, should the searcher diffuse
fast when the target diffuses fast or should the searcher diffuse fast when the
target diffuses slowly?

To answer this question, we apply (3.43) which reveals that if the searcher
diffuses fast (slowly) when the target diffuses fast (slowly), then the MFPT is

T ∼ |Ω|

πεCb
(
D+

0

√
1 +D+/D+

0 +D−0

√
1 +D−/D−0

) , as ε→ 0. (5.6)

In the opposite situation, in which the searcher diffuses fast (slowly) when the
target diffuses slowly (fast), the MFPT is

T ∼ |Ω|

πεCb
(
D+

0

√
1 +D−/D+

0 +D−0

√
1 +D+/D−0

) , as ε→ 0. (5.7)

It is straightforward to check that the MFPT in (5.6) is less than the MFPT in
(5.7). Thus, the MFPT is minimized by coupling fast (slow) searcher diffusion
with fast (slow) boundary target diffusion.
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We now investigate the analogous question for interior targets. Suppose
that there is one interior target and zero boundary targets. As above, suppose
the boundary target diffusivity fluctuates between D− < D+ and the searcher
diffusivity fluctuates between D−0 < D+

0 , spending an equal proportion of time
in each diffusive state. Equation (3.43) implies that the MFPT is

T ∼ |Ω|
2πC i(D+

0 +D−0 +D+ +D−)
, as ε→ 0, (5.8)

regardless of the correlations between searcher and target diffusivity. That is, in
contrast to the result for boundary targets, correlations between searcher and
interior target diffusivities have no leading order effect on the MFPT.

Example 4 (Fluctuations in diffusivity). First assume that all of the targets
are immobile (Di

n = Db
n = 0) and always open. Then, (3.43) implies that the

MFPT is

T ∼ |Ω|
{
εD0

[
2π

Nb∑
n=1

Cb
n + 4π

N i∑
n=1

C i
n

]}−1

, as ε→ 0,

where

D0 :=
∑
j∈J

γ(j)D0(j)

is the average searcher diffusivity. Hence, for the purpose of calculating the
leading order MFPT, the fluctuating searcher diffusivity can be replaced by a
constant, average searcher diffusivity.

Similarly, if we also allow the interior targets to diffuse with fluctuating
diffusivity, then (3.43) implies that the MFPT is

T ∼ |Ω|
{
ε
[
D02π

Nb∑
n=1

Cb
n + 4π

N i∑
n=1

(D0 +D
i

n)C i
n

]}−1

, as ε→ 0,

where

D
i

n :=
∑
j∈J

γ(j)Di
n(j), n ∈ {1, . . . , N i},

is the average diffusivity of the nth interior target. That is, the fluctuating
searcher and interior target diffusivities can be replaced by their average diffu-
sivities.

However, if we allow the boundary targets to diffuse with fluctuating diffusiv-
ity, then (3.43) implies that we cannot merely replace the fluctuating boundary
target diffusivity by their average diffusivity (even if the searcher diffuses with
constant diffusivity). This is because ξn(j) in (3.22) is a nonlinear function of
Di
n(j).
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Example 5 (Gating independent of fluctuations in diffusivity). Suppose that
the target gating is independent of fluctuations in searcher and target diffusivity.
This implies that the Markov jump process J(t) ∈ J can be decomposed into
two independent Markov jump processes, Jg(t) ∈ Jg and Jd(t) ∈ Jd, that
respectively control the gating and diffusivity fluctuations, and the state space
of J(t) is the Cartesian product J = Jg × Jd = {(jg, jd) : jg ∈ Jg, jd ∈ Jd}.
Furthermore, it is straightforward to show that the invariant measure of J(t)
is the product measure γ(jg, jd) = γg(jg)γd(jd), where γg ∈ R1×|Jg| and γd ∈
R1×|Jd| are the unique invariant measures of Jg(t) and Jd(t), respectively.

Therefore, (3.43) implies that the MFPT is

T ∼ |Ω|
{
ε
∑
jd∈Jd

γd(jd)D0(jd)
[
2π

Nb∑
n=1

P b
nC

b
n

(
1 +

Db
n(jd)

D0(jd)

)1/2

+ 4π

N i∑
n=1

P i
nC

i
n

(
1 +

Di
n(jd)

D0(jd)

)]}−1

, as ε→ 0,

(5.9)

where P b
n ∈ (0, 1] (respectively P i

n ∈ (0, 1]) is the proportion of time that the
nth boundary (respectively interior) target is open,

P b
n :=

∑
jg∈Jg

γg(jg)Sb
n(jg), P i

n :=
∑
jg∈Jg

γg(jg)Si
n(jg).

In words, (5.9) implies the simple and intuitive result that the capacitance of
each target is merely reduced by the proportion of time that that target is open.
If each target is open the same proportion of time P ∈ (0, 1], then (5.9) implies
that the MFPT is

T ∼ P−1Topen, as ε→ 0,

where Topen is the MFPT in the case that the targets are always open.

6 Numerical simulation

We perform Monte Carlo simulations to verify the predicted MFPTs derived
above. In all numerical results discussed, 104 trajectories were simulated. For
each trajectory, a single searcher particle is initialized to a position uniformly
within the domain Ω and evolves with (unless noted) diffusivity D0 = 1. This
update step uses an Euler-Maruyama scheme [39] with varying time step ranging
from 10−3 to 10−7 depending on how far the particle is from the nearest target or
boundary. The interior targets are also initialized uniformly within the domain
and evolve by standard diffusion updated with the Euler-Maruyama scheme.
The boundary targets are initialized uniformly on ∂Ω. The SDEs (3.2) provide
the evolution of the centers of the boundary targets, written in the orthogonal
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coordinates. When the searcher hits the boundary of the domain, a check is
made whether a boundary target is encountered. If not, the interior particle is
reflected off the normal direction of the surface at the point of intersection, and
repeated until this procedure places the particle within the domain. Reflection of
interior targets is handled in the same manner. When the searcher encounters
either type of target, the trajectory is terminated and the time is recorded.
Interior targets are taken to be spheres and boundary targets are circular, each
with radius ε. More precisely, for interior targets we take Ωn = {x ∈ R3 : |x| =
1} in (3.6) for n ∈ {1, . . . , N i}, and boundary targets are defined in (3.7)-(3.8)
with a = 1.

Examples 1 and 2 above discuss the first scenario of interest for numerical
simulation: how target diffusivity influences the MFPT with varying number of
interior and boundary targets with constant diffusivity, D. We take the domain
to be a unit sphere and the target size to be ε = .025. The results of these Monte
Carlo simulations, compared with the predicted formulae (5.1) and (5.4), are in
Fig. 1a. Indeed, we see a strong agreement between the predicted dependence
on D for interior, boundary, and mixed target scenarios.
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Figure 1: Mean first passage times with constant searcher and target diffusiv-
ity. a: MFPT (T ) for a particle in a spherical domain as a function of target
diffusivity D, for varying types and numbers of targets. b: MFPT (T ) plotted
against target diffusivity D for a single boundary target on the surface of a
non-spherical (ellipsoidal) domain and varying ε.

We also performed simulations in an ellipsoid domain Ω with standard pa-
rameterization

x = a sin θ cosφ, y = b sin θ sinφ, z = c cos θ, (6.1)

with θ ∈ [−π/2, π/2], φ ∈ [−π, π], and a = 2, b = 1, c = 1. In these simulations,
we kept the diffusivity of the searcher constant (D0 = 1) and varied the size ε
and diffusivity D of the boundary target. The results of these simulations are
in Fig. 1b, along with the predicted values in (5.1), and we again see excellent
agreement between the simulations and the predicted values.

24



We also used Monte Carlo simulations to verify the MFPT in scenarios in
which the searcher and targets switch diffusivities. Taking the domain to be a
unit sphere, we follow Example 3 above by having a single interior or boundary
target with ε = 10−1.5 which switches between a slow and a fast diffusivity
(D− = 0.05 and D+ = 2) at rate λ > 0. In addition, the searcher switches
between diffusivities D−0 = 0.1 and D+

0 = 1. The results of these simulations
are in Fig. 2, where we consider the MFPT T to a single boundary or single
interior target as a function of the switching rate λ.
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Figure 2: Mean first passage time for switching searcher and target diffusiv-
ities. a: MFPT (T ) as a function of switching rate λ of searcher and one
boundary target. The curves are (5.6) and (5.7). b: MFPT (T ) as a function
of switching rate λ of searcher and one interior target. The curves are (5.8).
In both plots, the correlated scenario has the searcher and target switch be-
tween slow/slow and fast/fast states, whereas anticorrelated switches between
slow/fast and fast/slow.

In one set of simulations, which we denote correlated, the searcher and the
target is initialized (with equal probability) to both be in their slow state or both
in their fast state, so the state of the system is either (D−0 , D

−) or (D+
0 , D

+).
At rate λ, the whole system switches between these two states, causing both
the searcher and target to switch from slow to fast (or vice versa). In the
anticorrelated scenario, the searcher is initialized to a diffusivity and targets
are initialized to the opposite, so the states of the systems now become and
(D−0 , D

+) or (D+
0 , D

−). Again, at rate λ, the whole system switches between
these two states. We plot these Monte Carlo simulations for a boundary target
against the predictions in (5.6) and (5.7) in Fig. 2a. We also note that in the
fast switching limit (large λ), the switching diffusivities can be replaced with
average diffusivities D̄0, D̄ in the constant diffusivity prediction (5.1). We see
that for these chosen parameters, in the slow switching scenario, the correlated
scenario produces the largest MFPT. However, as the switching rate increases,
the theory values become accurate and remain accurate over several orders of
magnitude. As predicted, the performance reverses with switching: the anticor-
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related scenario performs worse than the correlated. As λ becomes large, both
correlated and anticorrelated converge to the fast switching limit, which closely
matches the correlated prediction.

We repeat this same setup for a single interior target, the results of which can
be seen in Fig. 2b. Here, the theory suggests that the correlated and anticorre-
lated scenarios should be indistinguishable with both having a MFPT predicted
by (5.8). Indeed, we see that for sufficiently fast switching, the prediction holds
and the two different correlation scenarios are indistinguishable, illustrating a
fundamental difference between switching interior and boundary targets.

7 Discussion

We have extended the narrow escape problem to include diffusing boundary
targets, diffusing interior targets, stochastically fluctuating searcher and tar-
get diffusivities, and stochastically gated targets. We make no assumptions on
correlations between changes in diffusivity and gating, and thus they can be
independent, perfectly correlated, or have some nontrivial correlations. Fur-
thermore, the time between transitions in diffusivity or gating can have any
phase distributions. Since phase distributions are dense in the set of nonneg-
ative distributions [50], our results hold for effectively any choice of transition
time distributions.

Our analysis is in the narrow escape (small target) limit. Note that our
results ((2.4), (2.8), and (2.9)) remain valid if take the limit of small boundary
and/or interior target diffusivities, as the factors in (2.6) and (2.7) reduce to
unity if Db

n/D0 → 0 and Di
n/D0 → 0, respectively. However, our results do not

in general remain valid if we take the limit of large diffusivity of targets. To see
this, note that the MFPT formula in (2.4) vanishes if Db

n(j)/D0(j) → ∞, but
the MFPT in this limit should actually correspond to the case of a perfectly
absorbing boundary (see [44] for more on this phenomenon).

Our work is related to a number of prior studies. The method of matched
asymptotic analysis that we employ relies on the theory of strong localized
perturbations [66]. More specifically, the methods that we employ for diffusive
targets follow the methods used in [18] for immobile interior targets and the
methods used in [19] for immobile boundary targets.

Other works that study diffusive search for diffusive targets include [7, 8, 26,
27, 47, 55, 62, 65]. In contrast to these previous works which consider searchers
and targets both diffusing in the same space dimension (which is typically one
space dimension), we considered searchers diffusing in three dimensions and
boundary targets diffusing in two dimensions (and interior targets diffusing in
three dimensions). To our knowledge, the only prior work that considers such
inter-dimensional reactions of searchers diffusing in three dimensions and targets
diffusing in two dimensions is our recent work [44], where we show how receptor
lateral diffusion and cell rotational diffusion modify Berg and Purcell’s classic
results [5] in chemoreception.

In the context of molecular and cellular biology, several recent works study
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the MFPT of a searcher to reach a target, where the searcher diffusivity stochas-
tically fluctuates [12, 13, 14, 28, 56, 57]. In contrast to our present work, these
prior works consider only two possible diffusivities for the searcher and a single
immobile target. In further contrast, [13, 28] consider one-dimensional or spher-
ically symmetric spatial domains. Moreover, [28, 56, 57] consider fluctuations
in diffusivity and gating assuming that the states of the diffusivity and the gate
are perfectly correlated. Additional prior studies of diffusive search for stochas-
tically gated targets includes [2, 9, 10, 11]. In most of this prior work, there
is only a single target [9, 11, 13, 28, 56, 57]. In the references which consider
multiple gated targets, the gate states are either perfectly correlated [2] or inde-
pendent [10]. All of this prior work assumes that the time between fluctuations
in diffusivity and/or gating is exponentially distributed.

We have followed [29] in assuming that our three-dimensional spatial do-
main Ω is bounded by the level surface of an orthogonal coordinate system.
This class of domains is quite general, as it includes all axially symmetric do-
mains. Furthermore, this assumption allows our calculations regarding diffusing
boundary targets and the behavior of the MFPT and splitting probabilities to
be quite explicit. Nevertheless, we suspect that our results can be extended to
any domain with a smooth boundary. Indeed, our results immediately apply to
domains with smooth boundaries if we have only interior targets (Nb = 0).

Furthermore, we found that the leading order behavior of the MFPT and
splitting probabilities depends only on the volume of the domain and is otherwise
independent of the geometry of the domain. To determine how the geometry
of the domain influences the MFPT and splitting probabilities at higher orders,
one would need more detailed information about a certain Green’s function
corresponding to that domain. Indeed, using detailed information about certain
Green’s functions for spherical domains, previous authors have determined two
or three term asymptotic expansions for MFPTs to small targets in various
scenarios [18, 19, 20, 29].

An additional interesting and biologically motivated future direction would
be to extend our results to space-dependent diffusivities. Alternatively, one
could seek to extend our results to space-dependent transition rates between
spatially constant diffusivities. Indeed, very recent experimental work has re-
vealed the critical role that such space-dependent transition rates play in the
formation of protein concentration gradients in developing cells [15, 25, 67] (see
also [43]). The notion that space-dependent transition rates between spatially
constant diffusivities could yield space-dependent diffusivities was proposed and
analyzed in [12, 14] (see also [45]), along with the resulting Itô-Stratonovich
dilemma for continuous stochastic processes with multiplicative noise [42, 64].
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