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ABSTRACT
Transient bonds between fast linkers and slower particles are widespread in physical and biological systems. Despite their diverse structure and
function, a commonality is that the linkers diffuse on timescales much faster compared to the overall motion of the particles they bind to. This
limits numerical and theoretical approaches that need to resolve these diverse timescales with high accuracy. Many models, therefore, resort
to effective, yet ad hoc, dynamics, where linker motion is only accounted for when bound. This paper provides a mathematical justification
for such coarse-grained dynamics that preserves detailed balance at equilibrium. Our derivation is based on multiscale averaging techniques
and is broadly applicable. We verify our results with simulations on a minimal model of fast linker binding to a slow particle. We show how
our framework can be applied to various systems, including those with multiple linkers, stiffening linkers upon binding, or slip bonds with
force-dependent unbinding. Importantly, the preservation of detailed balance only sets the ratio of the binding to the unbinding rates, but it
does not constrain the detailed expression of binding kinetics. We conclude by discussing how various choices of binding kinetics may affect
macroscopic dynamics.
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I. INTRODUCTION

Transient bonds between fast molecules and other slower
molecules are found ubiquitously throughout physical systems. Such
bonds enable momentum transfer at microscopic scales and are
at the root of diverse phenomena, including linkers that tune the
material properties of polymers,1–4 shape spatial organization and
function of biological systems,5–10 and determine the rate of teth-
ered chemical reactions.11 Stochastic modeling of transient binding
of linkers via numerical or theoretical approaches is, therefore, of
widespread interest.

The diversity of phenomena goes hand in hand with a variety
of systems and hence of lexical terms: Examples include cross-links
in polymer meshes,1,2 metal–ligand bonds in self-assembled porous
materials,12,13 complementary DNA pairs hybridizing between
colloids,14–21 and fast myosin motors binding to slender actin
fibers.5,6,22 Henceforth, the word linker will refer to any molecule
with (a) a binding end that can form a bond with another molecule

and (b) that relaxes rapidly to a finite length. In the previous exam-
ples, the linker is the polymer linker, ligand, DNA, or myosin
molecule. The bond will refer to the chemical bond formed between
a linker and a slower molecule (or another linker). In the previ-
ous examples, the bond is the weak polymer–polymer adhesion, the
metal–ligand chemical bond, the hybridized DNA section, or the
high-affinity myosin head after ATP hydrolysis.

Despite enormous variations in mechanochemical properties of
linking molecules, one unifying feature is their diffusion on charac-
teristic timescales much faster than the overall motion of the fibers or
objects they link.10,23–25 This rapid diffusion of (often many) linking
molecules creates disparate timescales and length scales that must
be resolved, often creating a bottleneck for numerical or theoreti-
cal investigations.12,13,26 To alleviate this, it is common to rely on
coarse-grained descriptions of the linkers, for their dynamics, bind-
ing kinetics, or both. In these coarse-grained scenarios, cross-linkers
are replaced by effective laws so that their detailed dynamics need
not be considered directly.22,27–36 For example, if a fast linker binds
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transiently to a slow particle, a coarse-grained simulation or model
would only specify the dynamics of the slow particle; see illustration
in Fig. 1. While the proposed effective dynamics may be relatively
intuitive in some scenarios, there does not seem to be a systematic
procedure for justifying and comparing this coarse-graining across
different systems.22,29,31 This paper provides a mathematical justi-
fication for such dynamics and, more importantly, a framework to
derive effective dynamics in various settings.

In establishing the justification for the effective dynamics
with fast linkers, several questions arise. Importantly, when linker
dynamics are in thermodynamic equilibrium, with binding and
unbinding rates that depend on mutual distance, detailed balance
has to be enforced.24,25,37 An immediate consequence is that the
equilibrium distribution of the system is determined by the binding
and unbinding rates. As these detailed rates are often unmeasured, a
variety of choices are taken in the literature.22,27–34 These choices of
specific forms of binding and unbinding spatial dependence intro-
duce ambiguity in interpreting the resulting dynamics. We, there-
fore, briefly discuss choices of kinetic rates and their consequences
in the coarse-graining procedure.

The paper is organized as follows: We first consider a min-
imal system [Fig. 1(b)] made of a single fast linker binding to a
slow particle (Sec. II) and catalog the variety of modeling choices
at this microscopic level. Next, we rigorously coarse-grain fast linker
dynamics to obtain an effective model for the slow particle (Sec. III)
that we validate with numerical simulations (Sec. IV). We then
show, with three examples, how we can apply our formalism to
more complex yet common setups (Sec. V): We investigate (i) two

FIG. 1. Coarse-graining principle for a fast linker forming a transient bond. (a)
Cartoon of a common coarse-graining procedure where fast linkers (pink) between
slow fibers (blue) are modeled only when they are bound. In this work, we study a
minimal system where (b) a fast jiggling linker (pink) binds and unbinds rapidly to
a binding site on a slow particle with rates qon and qoff that depend on the relative
distance. The 1D position of the linker is x` and that of the slow particle xs. In
this paper, we use multiscale averaging techniques to coarse-grain the dynamics
of the fast linker while preserving detailed balance. In the coarse-grained model,
only the slow particle dynamics are specified, with effective kinetic rates qeff

on(xs)
and qeff

off(xs) and forces that only depend on the position of the slow particle xs.

fast reactive linkers connecting to each other, (ii) a linker that
stiffens upon binding, and (iii) a slip bond with force-dependent
unbinding. Finally, we discuss how the choice of microscopic kinetic
rates can affect the coarse-grained dynamics both at short and long
timescales in nontrivial ways (Sec. VI). We hope our framework will
help to investigate systems with fast transient cross-linkers more
systematically.

II. GENERAL SYSTEM WITH TRANSIENT
CROSS-LINKERS
A. Microscopic dynamics

We consider the motion of a relatively slow particle represent-
ing, for example, a slender actin filament, a cell, or a colloid.22,24,25

The slow particle diffuses, for simplicity, in one spatial dimension
[see Fig. 1(b), blue particle] and we will later discuss how to extend
the results to 3D. The position of the slow particle at time t is xs(t).
The diffusion coefficient of the particle is Ds = kBT�γs, where kB
is Boltzmann’s constant, T is the temperature, and γs is the fric-
tion coefficient of the particle. The particle evolves in an external
potential Us(xs), which could represent connections with other par-
ticles. The forces in the unbound state on the particle are thus simply
Fu = −@sUs(xs).

We also track the motion of a relatively fast linker, for exam-
ple, a myosin head22 or the sticky ends of a single-stranded DNA
filament.24,29 The fast linker’s position is x`, and the linker dif-
fuses with diffusion coefficient D` = kBT�γ`, where γ` is the friction
coefficient of the fast particle [see Fig. 1(b), pink linker]. Here, the
linker is attached to another slow object or an immobile surface; for
now, we will consider it connected to a fixed point. This assump-
tion ensures that the binding is localized in space. The linker usually
resists extension, as it is made of a polymer or a protein that resists
uncoiling.23,24 It is hence reasonable to assume the linker is submit-
ted to a recoil force, −k`(x` − x`,0), where k is a spring constant,38

and x`,0 is the rest length of the linker. Note that, as long as the
force is conservative, extending our approach to other expressions
is straightforward.

The unbound dynamics are

�����������������������������

dxs

dt
= Fu(xs, x`)

γs
+
�

2kBT
γs

ηs(t)
= −@sUs(xs)

γs
+
�

2kBT
γs

ηs(t),
dx`
dt
= −k`

γ`
(x` − x`,0) +

�
2kBT

γ`
η`(t),

(1)

where the ηi(t) are uncorrelated Gaussian white noises, where�ηi(t)� = 0 and �ηi(t)ηj(t′)� = δijδ(t − t′), where δij is the Kro-
necker symbol and �⋅� is an average over realizations of the noise.
Without loss of generality, we will shift the domain such that the
rest length of the fast variable is at the center of the domain,
i.e., x`,0 = 0.

The slow particle may transiently bind to the linker [see
Fig. 1(b), orange bond]. In this entire paper, we will consider that
when the bond is formed, it corresponds to a stiff spring with spring
constant kb added between the particle and the linker. Hence, in the
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bound state, the forces on the slow particle are Fb = −kb(xs − x`)− @sUs(xs). The bound dynamics are thus

�����������������������������

dxs

dt
= Fb(xs, x`)

γs
+
�

2kBT
γs

ηs(t)
= −kb

γs
(xs − x`) − @sUs(xs)

γs
+
�

2kBT
γs

ηs(t),
dx`
dt
= kb

γ`
(xs − x`) − k`

γ`
(x`) +

�
2kBT

γ`
η`(t).

(2)

Our model for the bound dynamics is not unique. For example,
one could consider that instead of a stiff spring, the bond formed
is a rigid rod constraining the dynamics.24,32,33,39 Yet, we choose this
spring bond model as it is a simple starting point and because it is
physically satisfying. Indeed, with the spring model, the linker and
the particle relax toward each other, while in the rigid rod model,
they can stay unnaturally far apart. Ultimately, we will consider the
dynamics in the limit where the bond is very stiff, corresponding to
a so-called soft constraint.40–42

The equilibrium distribution corresponding to these choices
of dynamics can be decomposed over the two states (bound and
unbound) as π = (πu, πb)T . The component of the equilibrium
distribution corresponding to the unbound state is

πu(xs, x`) = 1
Zu

e−Us(xs)�kBT−k`(x`)2�2kBT (3)

and the bound one is

πb(xs, x`) = 1
Zb

e−kb(xs−x`)2�2kBT−Us(xs)�kBT−k`(x`)2�2kBT , (4)

where Zu and Zb are constant prefactors that are set by a
normalization condition on the total equilibrium distribution
∫dx` dxs(πu + πb) = 1 and by detailed balance, which we turn to
now.

B. Possible kinetic rates and detailed balance
We consider that the linker and the particle bind to each other

with rate qon and unbind with rate qoff. To be physically accurate, it
is reasonable to assume that both rates may depend on the spatial
variables (xs, x`), a priori. While the exact expression of the rates for
our coarse-graining approach does not matter, it is crucial to recall
how these rates should be specified to satisfy detailed balance.

If the system we consider is at equilibrium, the rates must satisfy
detailed balance.24,37 Here, this means the probability flux at equi-
librium of going from one state to the other is equal to the inverse
flux, i.e.,

πu(xs, x`)qon(xs, x`) = πb(xs, x`)qoff(xs, x`). (5)

Here, this relation simplifies to

qon

qoff
= Zu

Zb
e−kb(xs−x`)2�2kBT. (6)

To make this expression more explicit, we can redefine the con-
stants Zu = Z and Zb = Zq0

off�q0
on, where Z is a global normalization

constant such that ∫dx` dxs(πu + πb) = 1. Here, q0
off and q0

on set the

FIG. 2. Possible choices of binding and unbinding kinetics agreeing with detailed
balance. (a) Constant binding rate, (b) constant unbinding rate, and (c) both rates
varying; see text for detailed expressions. Here, we chose a bond spring constant
kbL2�kBT = 40 and a fixed macroscopic probability Πb = 0.5.

typical range of the kinetic rates and are related via the typical free
energy of bond formation E0 such that q0

on�q0
off ≡ e−E0�kBT . We obtain

qon

qoff
= q0

on

q0
off

e−kb(xs−x`)2�2kBT. (7)

Since this is the only relation that constrains qon and qoff, it is clear
that the choice of qon and qoff is not unique and that at least one of
the rates has to depend on space.

1. Possible expressions of the rates
Therefore, there are infinite possibilities in how we can spec-

ify rates consistent with detailed balance, reflecting the diversity of
choices made in the literature.22,25,27–34,36,43–45 However, we can cat-
alog a few simple commonly chosen examples, see Fig. 2, and discuss
to what extent they are consistent with physical intuition.

● Model 0: Unbinding is faster further away from the target,
but the binding rate is constant,

�������
qon = q0

on,
qoff(xs, x`) = q0

offe
kb(xs−x`+`b)2�2kBT.

(8)

This binding term provides the convenient feature of avoid-
ing the need to resolve detailed dynamics of the fast linker.
Furthermore, the unbinding form is motivated by the intu-
itive observation that bonds break faster when a larger
force is exerted. One such example is molecular motor
detachment,46–48 although this is often modeled as a slip
bond, which we discuss in Sec. V.

However, we note that this choice suffers from the numeri-
cally undesirable feature of the off rate increasing exponentially as
a function of distance.
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● Model 1: Binding is faster closer to the target, but unbinding
is constant,

�������
qon(xs, x`) = q0

one−kb(xs−x`)2�2kBT ,
qoff = q0

off,
(9)

which is a model used in Refs. 28, 31, and 36. Constant
unbinding seems rather unphysical since one would expect
the bond to break if the linker and the particle are brought
too far apart. We can instead opt for an expression where
both rates depend on space, for example,● model 2, where binding is faster closer to the target,
unbinding is faster further away from the target,

�������������
qon(xs, x`) = q0

on

1 + ekb(xs−x`)2�2kBT
,

qoff(xs, x`) = q0
off

1 + e−kb(xs−x`)2�2kBT
,

(10)

which solves the issues raised above.
While these are possible choices of the binding rates that agree

with detailed balance, these are not the only ones, and one could
consider various other kinetics, possibly with a kinetic barrier to
overcome to unbind or to bind.

One might then wonder if the choice of the microscopic kinetic
rates affects the long-time dynamics of the system. We raise the
question here but we will not attempt to answer it thoroughly.
Rather, our goal is to show how to systematically coarse-grain the
dynamics of the fast linker once the microscopic dynamics are
properly chosen.

2. Binding models with uniform kinetic rates
Inspired by a previous model,49 we also discuss an alternative

binding scheme. Specifically, if one wanted the binding and unbind-
ing rates to be uniform, at least over a certain length scale, the only
option is that the dynamics are not specified via Eqs. (1) and (2) but
have to be changed. We illustrate this point briefly below.

For example, one could define uniform rates, as

�������
qon = q0

on,
qoff = q0

off,
(11)

where the rates q0
on and q0

off are nonzero. In that case, the bound
πb and unbound πu parts of the equilibrium distribution must be
the same, which constrains the forces to be the same in each state.
Otherwise, detailed balance is broken. For example, the bound and
unbound dynamics could both satisfy

�����������������

dxs

dt
= −kb

γs
(xs − x`) − @xUs(xs)

γs
+
�

2kBT
γs

ηs(t),
dx`
dt
= kb

γ`
(xs − x`) − k`

γ`
(x`) +

�
2kBT

γ`
η`(t).

(12)

As a result, the dynamics are not very interesting as they sim-
ply amount to a global quadratic confining potential with spring
constant kb.

Tethered dynamics are more in line with physical intuition if
the confining potential associated with the bond is restricted to a
patch in space. Following Refs. 49 and 50, this can be achieved by
defining kinetic rates that are nonzero only when the linker and the
particle are close, typically

���������
qon = q0

onH(�xs − x`� < R),
qoff = q0

offH(�xs − x`� < R), (13)

where R is a characteristic distance that sets a reasonable maximum
binding distance.32,33 One can define R =�2kBT�kb, where kb is the
spring constant of the bond and R corresponds, therefore, to ther-
mal vibrations around that bond. When the linker and the particle
are nearby �xs − x`� < R, the dynamics follow Eq. (12) while they are
given by Eqs. (1) and (2) otherwise. This ensures that detailed bal-
ance is satisfied in both regions, since when �xs − x`� ≥ R the kinetic
rates are zero. We refer to models with uniform kinetic rates as
in Eq. (13) as Doi models37,51,52 in analogy with reaction models
without linkers.

However, such uniform kinetic rates are unphysical in two
ways: (i) Bond dissociation is not allowed when the bond is stretched
beyond R, which seems rather unlikely; and (ii) when they are close,
the interaction between the linker and particle is the same regard-
less of the state of the bond—see Eq. (12), which also seems rather
unlikely.

We will briefly show in Sec. VI how also at the coarse-grained
level, important physical differences arise between Doi models with
uniform kinetic rates as in Eq. (13) and models with spatially
dependent kinetic rates as say in Eq. (10). This means, again, that
the choice of kinetic rates affects short-time dynamics at least in
nontrivial ways; hence, that is an important assumption of any
model.

III. COARSE-GRAINED DYNAMICS WITH FAST LINKERS
Our aim is now to rigorously coarse-grain the linker dynam-

ics to obtain the effective long-time dynamics of the particle. This is
useful both to gain analytic insight and to propose consistent and fast
simulation schemes. We use multiscale averaging53 to coarse-grain
the dynamics, a technique that is broadly used in the field to prop-
erly average over short length scales and timescales.10,24,27,28,39,47 We
will show the approach is valid over a broad range of parameters
in Sec. IV. We provide Nomenclature as a summary of the main
notations used throughout the discussion.

A. Set up of the dynamics
The set of stochastic Eqs. (1) and (2) defines a

Markov process that is conveniently studied via the Kol-
mogorov backward equation53,54 on the functions f (xs, x`, t)= ( fu(xs, x`, t), fb(xs, x`, t))T such that

@t f =Lf , f (xs, x`, 0) = g(xs, x`), (14)

where L is the generator of the system and g is any scalar function.
Here, the functions f (xs, x`, t) = ∫ p(x′s , x′̀ , t�xs, x`)g(x′s , x′̀ ) dx′̀ dx′s
give the expectation of any scalar function g(xs(t), x`(t)), given an
initial condition xs(0) = xs, x`(0) = x`, where p is the probability
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density that the system evolved from the initial condition to (x′s , x′̀ )
at time t. Once we know how such functions f evolve, we may
calculate any statistic g of our stochastic process.

The generator L can be calculated from the forward equation,
the Fokker–Planck equation, associated with the dynamics Eqs. (1)
and (2), see the supplementary material, Sec. 1, for further details.
The full generator can be written as

L = Q +V, (15)

where

Q = ���
−qon qon

qoff −qoff

��� and V = ���
Vu 0

0 Vb

���,

with

Vu = −k`
γ`

x`@` + kBT
γ`

@`` − @xU(xs)
γs

xs@s + kBT
γs

@ss,

Vb = −k`
γ`

x`@` + kBT
γ`

@`` − @xU(xs)
γs

xs@s + kBT
γs

@ss

− kb

γ`
(x` − xs)@` − kb

γs
(xs − x`)@s.

B. Nondimensionalization
To highlight the ratio between the different temporal and spa-

tial scales at play, we non-dimensionalize our equations. Since the
particle’s motion is much slower than that of the linker, we can
identify a small number ε = γ`�γs. We seek the dynamics of the
slow particle over a typical long timescale τ0 such that its motion
is diffusive, extending over the range x0 =√D0τ0. We now can call
q′on = qonτ0 and similarly q′off = qoffτ0, remembering that these are
both functions of space. We consider for now that we observe the
dynamics over timescales τ0 where transient binding and unbind-
ing are still relevant such that q′on = O(1). Typical slow dynamics
are captured by the timescale τ0; so, again we consider κ = k`τ0�γs= O(1). We also write λ = kbτ0�γs = O(1) for now. Since ε = γ`�γs,
we have k`τ0�γ` = k`τ0�γsε.

In this scaling, we have the nondimensional generator
L′ = 1

ε L
′
0 +L′1 such that

L′0 = ���
−κx`@` + @`` 0

0 −κx`@` − λ(x` − xs)@` + @``
���

and

L′
1 =
�����
−q′on − @sU(xs)

kBT
@s + @ss q′on

q′off −q′off − λ(x` − xs)@s − @sU(xs)
kBT

@s + @ss

�����
.

In the following, we will drop the ⋅′ notations for simplicity.

C. Averaging procedure
We then look for a solution to @t f =Lf of the form f = f0+ εf 1 + ε2 f2. To first order, we have

L0 f0 = ���
−κx`@` + @`` 0

0 −κx`@` − λ(x` − xs)@` + @``
��� f0 = 0. (16)

Notice that −κx` − λ(x` − xs) = −(κ + λ)�x` − xs
λ

κ+λ� such that the
general solution to Eq. (16) is

f0 = ���
g1(xs, t)
g2(xs, t)

��� +
���

h1(xs, t)
0

����
x`

0
e+κx2

dx

+ ���
0

h2(xs, t)
����

x`

0
e+(κ+λ)�x− λ

κ+λ xs�2

dx (17)

and for which the associated equilibrium distribution is of the form

π0 = 1√
2π

���
αe−κx2

`�2
βe−(κ+λ)�x`− λ

κ+λ xs�2�2
���. (18)

Here, α and β are free parameters and are not constrained by detailed
balance; they can be any real number. In fact, there is no exchange
between the bound and the unbound times at these very short
timescales. Notice that this means that the averaging approach does
not know a priori that it should preserve detailed balance.

In any case, we require � f0, π0�` to be bound; � f , p�` is the inner
product where the integration is only carried over the fast variable
x`. This imposes h1 ≡ 0 and h2 ≡ 0, and f0 = (g1(xs, t), g2(xs, t))T is
actually independent of the fast variable.

Seeking the next order L0 f1 = −L1 f0 + @t f0. A solution
exists for f1 if the Fredholm alternative is satisfied,53 i.e., if�(@t f0 −L1 f0).π0�` = 0 is true for any π0 in the null space of L�0 .
This corresponds to any real value combination of α and β; hence, we
may pick the convenient choice of (α, β) = (1, 0) and (α, β) = (0, 1).
We obtain

@tg1 = −∫e−κx2
`�2qon dx`

∫ e−κx2
`�2 dx`

(g1 − g2) − @sU(xs)
kBT

@sg1 + @ssg1,

@tg2 = ∫ e−(κ+λ)�x`− λ
κ+λ xs�2�2qoff dx`

∫ e−(κ+λ)�x`− λ
κ+λ xs�2�2 dx`

(g1 − g2)
− @sU(xs)

kBT
@sg2 + @ssg2

− λ�∫ (x` − xs)e−(κ+λ)�x`− λ
κ+λ xs�2�2dx`�

∫ e−(κ+λ)�x`− λ
κ+λ xs�2�2 dx`

@sg2.

(19)

D. Effective kinetic rates and dynamics
We have just obtained the coarse-grained backward equations

for the dynamics.
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We can carry over the last line’s integral and return to dimen-
sional units, to directly read off the effective on and off rates as
follows:

���������������������

qeff
on(xs) = ∫ e−k`x2

`�2kBTqon(x`, xs) dx`

∫ e−k`x2
`�2kBT dx`

,

qeff
off(xs) = ∫ e

−(k`+kb)�x`− kb
k`+kb

xs�2�2kBT
qoff(x`, xs) dx`

∫ e
−(k`+kb)�x`− kb

k`+kb
xs�2�2kBT

dx`

.
(20)

We find that, coherently, the effective on and off rates are weighted
averages over the distribution of positions of the fast variable in the
respective states. A similar expression for the coarse-grained rates
was obtained from a first principles derivation at equilibrium.25

Importantly, beyond the coarse-grained rates, from Eq. (19) we
can also read off the coarse-grained dynamics of the slow particle at
O(1) in the small parameter ε = γ`�γs, in the unbound and bound
states given by

���������������

dxs

dt
= −@sU(xs)

γs
+
�

2kBT
γs

ηu(t) (unbound),
dxs

dt
= −@sU(xs)

γs
− K

γs
xs +
�

2kBT
γs

ηb(t) (bound).
(21)

Here, K = k`kb�(k` + kb) is an effective spring constant. In the
Appendix, we verify that this coarse-graining maintains detailed
balance at the macroscopic level.

Overall, the coarse-grained dynamics we obtain are consis-
tent with physical intuition, at this lowest order in ε. The unbound
dynamics of the slow particle are not changed by the coarse-grained
approach. However, in the bound state, an extra recoil force is
exerted on the particle, corresponding to a force averaged over the
fast-moving linker. Interestingly, the spring constant K of the bond
formed at the coarse-grained level corresponds to the effective spring
constant corresponding to two springs in series, with spring con-
stants k` and kb. This is precisely what is expected physically and
from the sketch of the setup; see Fig. 1(b). One novelty of this calcu-
lation is that it allows one to give meaning to the spring constant K
used in effective models such as those used in Refs. 28, 31, and 36.

Both in the bound and unbound states, the coarse-grained dynam-
ics are damped by the friction coefficient γs. Although this is rather
intuitive, notice again that this is only true when ε is small enough,
otherwise the effective friction would be increased by the presence of
the linker.24,27 All in all, the lowest-order dynamics evolve as if the
linker were moving so fast that it loses memory of previous binding
and unbinding events.

Beyond these O(1) terms in the separation of scales
ε = γ`�γs, we can derive further terms at O(ε) and beyond, which
do account for more and more memory between binding events.
This can be done by proceeding with the coarse-graining approach
explained above to further terms in the expansion. We report in
the supplementary material, Sec. 2, the coarse-grained dynamics at
O(ε). The effect of memory is twofold: It modifies the binding rates
now containing qonqoff, q2

on, and q2
off couplings; and it also modifies

the forces. In particular, at O(ε) there is now a force in the unbound
state, which arises from a remnant memory of the recoil force on
the bound fast linker as the linker unbinds. Finally, at O(ε), diffu-
sion in the bound state is now damped by the presence of the linker.
Our coarse-graining approach is thus a robust tool to systematically
derive coarse-grained dynamics to any order.

E. General coarse-grained dynamics
The averaging approach can be extended in a straightfor-

ward way, following the averaging steps above, to more arbitrary
dynamics, and we summarize effective dynamics in full generality
in Eqs. (22)–(26). The initial forces on the slow particle in the bound
Fb(xs, x`) and the unboundFu(xs, x`) states can be arbitrary forces.
All forces on the particle and linker should be conservative so as to
define an equilibrium distribution. Eqs. (22)–(26) then provide the
general formulas for the effective dynamics, effective binding and
unbinding rates as well as the effective force on the particle in the
unbound and bound states. The diffusive part of the slow particle
motion is not affected by the coarse-graining procedure since we
assume diffusion coefficients do not depend on space. Finally, the
formulas can be extended in a straightforward way to 3D dynamics
and to multiple fast linkers. We will show in Sec. V how to use these
formulas with specific examples:

Effective dynamics
dxs

dt
= 1

γs
Feff

u/b(xs) +
�

2kBT
γs

ηu/b(t), (22)

Effective binding rate qeff
on(xs) = ∫qon(xs, x`)πu(xs, x`)dx`

∫ πu(xs, x`)dx`
, (23)

Effective unbinding rate qeff
off(xs) = ∫qoff(xs, x`)πb(xs, x`)dx`

∫ πb(xs, x`)dx`
, (24)

Effective force on the slow unbound particle Feff
u (xs) = ∫ Fu(x`, xs)πu(xs, x`)dx`

∫ πu(xs, x`)dx`
, (25)

Effective force on the slow bound particle Feff
b (xs) = ∫ Fb(x`, xs)πb(xs, x`)dx`

∫ πb(xs, x`)dx`
. (26)
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Notice how each formula from Eqs. (22)–(26) can be inter-
preted intuitively. The effective force in a given state or the rate of
switching from that state is simply the spatial average weighted by
the local probability distribution to be in that state. While this seems
consistent a posteriori, and consistent with detailed balance at the
coarse-grained level, the formulas in Eqs. (23) and (24) are not the
only possible expressions for the effective rates that obey detailed
balance and accurately describe the dynamics at lowest order in ε.
The results of Eqs. (22)–(26) are therefore not trivial. Notice that
in a related work, a similar expression for the coarse-grained rates
qeff

off and qeff
on was obtained using averaging techniques [Eqs. (6) or

(19) of Ref. 25]. However, a crucial addition here is that we pro-
vide also the coarse-grained dynamics of the slow particle, through
the effective equations of motion Eq. (22) and effective forces
Eqs. (25) and (26).

Interestingly, the expressions in Eqs. (22)–(26) are straight-
forward to compute. One simply needs to know the equilibrium
probability distribution of the free and bound linkers to obtain the
effective dynamics. Specifically, one only needs to know the depen-
dence of the equilibrium distribution on the linker coordinate x`
and not the details of the landscape for the slow particle xs. In prac-
tice, one could then simulate (or calculate) a free and bound linker,
obtain their local probability distributions, and integrate them to
obtain the effective dynamics. We note the caveat that the full
probability distribution needs to be evaluated if direct interactions
between linkers exist.

F. Limit regimes
We will now comment on the effective dynamics and kinetic

rates obtained for the minimal system of Fig. 1(b) [Eqs. (1) and (2)]
in a few limiting regimes of the system parameters k` and kb. In the
following, it will be useful to specify the expression of the rates and
we will use for example Eq. (9).

In all limiting regimes, some variables such as q0
on�q0

off have
to be specified with respect to the limits. In practice, the macro-
scopic probability of being bound, i.e., Πb (or unbound, Πu) can
be measured experimentally24,55 and is easier to probe than spa-
tially dependent kinetic rates. Hence, we constrain the different
functional forms for the kinetic rates to predict the same Πb. The
macroscopic probability of being bound (respectively unbound) is
Πb = ∫dxsdx`πb(xs, x`) [respectively, Πu = ∫dxsdx`πu(xs, x`)]. It is
easy to show that here

Πb

Πu
= e−E0�kBT

�
K
kb

∫ e−Us(xs)�kBTe−keffx2
s �2kBT dxs

∫ e−Us(xs)�kBT dxs
(27)

such that the macroscopic bound and unbound probabilities mea-
sure in particular the energy of the bond, weighted by the geometry
of the system. Of course, this does not constrain the local values
of the kinetic rates. Rather, it sets the value of some parameters,
here of E0.

1. Stiff bond
We first investigate the limit regime where the bond is very stiff,

i.e., kb � k`. This is the so-called soft constraint limit.40–42 In that
case, we expect the fast and slow particles are constrained to move

synchronously in the bound state. For this limit to make sense, we
need, according to Eq. (27), to constrain q0

on ∼�kbq0
off.

The effective force in the bound state converges to
Feff

u = −klxs − @sUs, i.e., simply to a recoil force exerted with a
spring constant corresponding to that of the fast linker (and the
force deriving from the external potential). This makes sense since
in the limit kb � k`, since the springs are in series, we expect the
weakest spring to take over and K ∼ k`.

The effective kinetic rates, according to Eq. (20) [and choosing
the kinetic rates as in Eq. (9)], are

qeff
on = q0

on

�
K
kb

e−Kx2
s �2kBT , qeff

off = q0
off. (28)

In the limit regime where kb � k`, we have qon ∼ q0
offe
−k`x2

s �2kBT and
qoff = q0

off. Hence the binding rate remains a function of xs, and
therefore spatially dependent. Qualitatively, the particle is more
likely to bind when it is closer to the average linker. It unbinds
though at the same rate regardless of the linker position. Similar
results may be found with other initial choices of kinetic rates such
as with Eqs. (8) or (10).

A few models in the literature actually take the spring con-
stant for the binding kinetics to be the linker’s spring constant
K = k`,28,31,36 making the implicit, albeit rather physical, assumption
that the bond’s spring constant is much stiffer than the linker’s. This
underlines that the meaning of the parameters in the kinetic rates is
underappreciated in the field.

Notice that here we explored a limit regime after taking the
limit of fast linker dynamics. This is not an issue here since the
limits commute. Indeed, one could initially consider an infinitely
stiff bond, and then take the limit of fast linker dynamics, and get
the same result—see the supplementary material, Sec. 1, for further
details.

2. Stiff linker
When the fast linker is stiff, then k` � kb. We then simply have

that the force in the bound state is determined by the spring constant
of the bondFeff

u = −kbxs − @sUs, as expected since now K ∼ kb in that
limit. With the same choice of kinetic rates as in Eq. (9), we simply
have that the effective on rate is faster near the average linker posi-

tion qeff
on = q0

one−
kbx2

s
2kBT and the effective off rate is constant. All in all,

this is a simple consequence of the dynamics of two springs in series,
when one of the spring constants is stiff compared to the other.

IV. VALIDATION OF THE COARSE-GRAINING
APPROACH

We now use numerical simulations to test the derived effective
forces and kinetic rates and determine the range of parameters over
which the averaging procedure is valid.

A. Simulation setup
We simulate the dynamics specified through Eqs. (1) and

(2) [with no confining potential on the slow particle U(xs) ≡ 0].
We use the same nondimensional variables τ0 and x0 =√D0τ0=�kBTτ0�γs such that the problem is fully characterized by five
nondimensional numbers ε, κ, λ, q′off and Πb�Πu. Here, ε = γ`�γs is
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not necessarily small and represents the ratio between friction coef-
ficients; κ = k`τ0�γs is the nondimensional spring constant of the
linker; λ = kbτ0�γs is that of the bond, q′off = q0

offτ0 the nondimen-
sional typical off rate. Finally, the on rate is set by the conservation
of macroscopic probability through Eq. (27), so by the ratio Πb�Πu,
once a choice of functional forms for the kinetic rates has been made.
Here, we will keep Eq. (10) as an example.

We discretize the dynamics of both slow and fast particles with
a standard Euler–Maruyama scheme with time step �t until a ter-
minal time of T = 1000τ0 with M = 1000 simulations for each set of
parameters. Initial configurations are sampled with the equilibrium
distribution of the system. We impose periodic boundary condi-
tions on the slow particle at a nondimensional distance L so that
the slow particle does not escape far away from the domain. The
domain size L = 10x0 and �t = 0.01τ0 are chosen sufficiently large
and small, respectively, such that our results do not depend on the
specific value.

To estimate the effective rates from simulation, we note that
this is a doubly stochastic Poisson process, or a Cox process,56

because the stochastic dynamics of the particle positions drive the
stochastic Poisson events of binding and unbinding. While sophis-
ticated methods for inference on Cox intensities exist,56 a simple
binning approach suffices here. We discretize xs into bins of width
�x and count the number of occurrences of each event in each
bin. For bin i with center xi, the estimated flux to the other state
is then Ĵ(xi) = Ni�(TM�x), where ⋅̂ notation means estimate and
Ni is the number of events (either binding or unbinding) occur-
ring in bin i. Notably, this estimates the macroscopic kinetic rates,
for instance, for unbinding Ĵeff

off(xs) ≈ qeff
off(xs)πeff

on(xs). The marginal
densities of being bound and unbound, πeff

on(xs) and πeff
off(xs), are

straightforwardly computed by the fraction of time in each state
and bin for xs. Then, the microscopic rates are estimated by q̂ eff(xs)= Ĵ eff(xs)�π̂ eff(xs). Finally, the forces Feff(xs) are taken as the aver-
age �xs(t + �t) − xs(t)� and accumulated in the corresponding bin
for xs(t).

B. Agreement between simulations and averaging
approach

We first compare effective rates and forces at long times. In
Figs. 3(a) and 3(b), the kinetic rates and forces obtained numeri-
cally and with averaging theory Eqs. (20) and (21) [alternatively with
Eqs. (22)–(26)] are in excellent agreement. The effective probability
distribution function is also in agreement with the marginal distribu-
tion Eq. (A1) [Fig. 3(c)]. Overall, at the coarse-grained level, detailed
balance holds numerically as well as analytically [Fig. 3(d)]. While
we present in Fig. 3 the results for a small value of ε = 0.1, similarly
good agreement can be obtained for large values of ε � 10 as long as
the simulation times are long enough, which is expected from the
coarse-graining procedure.

Overall, the analytical and numerical curves shown in Fig. 3
compare the effective rates and forces averaged over long times, but
do not necessarily validate the short and intermediate time dynam-
ics being correct in the coarse-graining procedure. To validate this,
we numerically compute the autocorrelation from trajectories of
the explicit microscopic model and coarse-grained as a function of
ε. In Fig. 4, the dynamics of the coarse-grained model agree with

FIG. 3. Numerical validation of the coarse-graining procedure, here in the case of
a fast linker transiently binding to a slow particle in 1D. Both binding and unbinding
are chosen to be spatially dependent, as in model 2, Eq. (10), with numerical para-
meters ε = 0.1, κ = 1, λ = 10, q0

off = 1�τ0, and q0
on chosen such that Πb�Πu = 1

determined by the relation (27). 1000 Simulations are run until T = 1000τ0. (a)
Microscopic binding and unbinding effective rates, (b) effective force, (c) effective
marginal probabilities of being bound or unbound, (d) macroscopic transition rates.
Theory curves are obtained with the expressions summarized in Eqs. (22)–(26).

those of the explicit model only for small ε. At ε � 1, the autocorre-
lation displays significant deviation. Intuitively, the coarse-grained
model loses the memory of recent binding and unbinding events
and therefore has faster decay in correlation. This highlights that the
coarse-grained dynamics described in Eqs. (22)–(26) are only valid
when ε � 1, i.e., when the timescales associated with fast linker or
slow particle relaxation are disparate enough. To account for these
memory effects, one could add the O(ε) terms to the coarse-grained

FIG. 4. A comparison between the detailed and coarse-grained model of the
autocorrelation of the slow particle position �xs(t + τ)xs(t)�t . In the limit of sep-
aration of timescales corresponding to small ε, the dynamics approach those of
the coarse-grained model. Parameter values are the same as in Fig. 3, with pur-
ple curves corresponding to ε = {10−2, 10−1, 100, 101, 102}. The curves for the
lowest two values of ε are indistinguishable.
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dynamics we derive in the supplementary material, Sec. 2. Alto-
gether, our numerical results thus show the averaging approach is
robust to infer coarse-grained effective dynamics.

V. APPLICATIONS
Having shown the validity of the averaging approach, we now

explore how to use Eqs. (22)–(26) in specific situations. We inves-
tigate (i) a pair of connecting linkers, (ii) a linker stiffening upon
binding, and (iii) a slip bond with force-dependent unbinding.
According to the specific example under scrutiny, we will focus
either more on the effective forces or on the effective kinetic rates,
and comment on the physical meaning of the results.

A. Pair of connecting linkers
We first consider two fast linkers that can connect to each other

(see Fig. 5). This could represent for example two complementary
DNA strands transiently hybridizing, which finds some applications
for example in the field of DNA-coated colloids.20,24,29,39,57,58 We
consider that one of the linkers, in position x2, is tethered to a fixed
plate while the other, in position x1, is tethered to a mobile slow par-
ticle, itself in position xs. Both linkers are described by springs with
the same spring constant k` and fluctuate rapidly.

Unbound dynamics: The unbound dynamics are given by

�������������������������

dxs

dt
= −k`

γs
(xs − x1) +

�
2kBT

γs
ηs(t),

dx1

dt
= −k`

γ`
(x1 − xs) +

�
2kBT

γ`
η1(t),

dx2

dt
= −k`

γ`
(x2) +

�
2kBT

γ`
η2(t),

(29)

where the ηi(t) are uncorrelated Gaussian white noises and here we
identify the force on the slow particle in the unbound state as

Fu = −k`(xs − x1). (30)

The unbound term of the equilibrium distribution corresponding to
this choice of dynamics is

πu(xs, x1, x2) = 1
Zu

e−
k`x2

2+k`(xs−x1)2

2kBT . (31)

FIG. 5. (a) Cartoon of two fast linkers that can connect to each other, representing
for example (b) two complementary DNA strands transiently hybridizing, one of
them being attached to a colloid whose motion is of interest.

Bound dynamics: The linkers can transiently form a bond with
spring constant kb,

�������������������������

dxs

dt
= −k`

γs
(xs − x1) +

�
2kBT

γs
ηs(t),

dx1

dt
= −k`

γ`
(x1 − xs) +

�
2kBT

γ`
η1(t) + kb

γ`
(x2 − x1),

dx2

dt
= −k`

γ`
(x2) +

�
2kBT

γ`
η2(t) − kb

γ`
(x2 − x1),

(32)

and we identify the force on the slow particle in the bound state as
identical to that in the unbound state,

Fb = −k`(xs − x1). (33)

The bound term of the equilibrium distribution corresponding to
this choice of dynamics is

πbound(xs, x1, x2) = 1
Zb

e−
k`x2

2+k`(xs−x1)2+kb(x2−x1)2

2kBT . (34)

Kinetic rates and detailed balance: Here, we will not specify the
kinetic rates in detail. However, since we specify the dynamics, the
binding and unbinding rates must satisfy detailed balance

qon

qoff
= q0

on

q0
off

e−k`(x2−x1)2�2kBT.

Effective force in the unbound state: We can now use
Eqs. (22)–(26) to obtain the effective force. Here, compared to our
foundational example with one fast linker in Sec. II, we have two
fast linkers, hence we need to carry the integral over those two fast
degrees of freedom. We find with Eq. (25) that

Feff
u (xs) = ∫Fu(x1, x2, xs)πu(x1, x2, xs)dx1dx2

∫πu(x1, x2, xs)dx1dx2

= ∫(−k`(xs − x1))e−k`x2
2�2kBTe−k`(xs−x1)2�2kBTdx1dx2

∫ e−k`x2
2�2kBTe−k`(xs−x1)2�2kBTdx1dx2

= 0 (35)

for symmetry reasons. In the unbound state, quite logically, at the
coarse-grained level the particle does not feel any effective force from
its unbound fast linker.

Effective force in the bound state: In the bound state, using
Eq. (26) we find that

Feff
b (xs) = ∫Fb(x1, x2, xs)πbound(x1, x2, xs)dx1dx2

∫πbound(x1, x2, xs)dx1dx2

= − k`
2 kb

k`
2 + kb

xs. (36)

In the bound state, we thus obtain that the effective force on the par-
ticle is a spring force. The force is centered around 0 as this is the
average position of both springs. The spring constant at the coarse-

grained level is
k`
2 kb

k`
2 +kb

, which corresponds, logically, to the effective

spring constant of three springs in series, with spring constants
k`, kb, k`.
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B. Stiffening linker upon binding
We now turn to another example where the linker stiffens

when bound—see Fig. 6(a). Such stiffening occurs when the linker
undergoes conformational changes upon binding28 or else upon
single-stranded DNA hybridizing into double-stranded, resulting in
a stiffer connection.16,18,21,24,59,60

Unbound dynamics: The unbound dynamics are still given by
Eq. (1).

Bound dynamics: The bound dynamics are now changed com-
pared to Eq. (2), since the linker now has a stiffer spring constant say
k′̀ > k`,

���������������

dxs

dt
= −kb

γs
(xs − x`) +

�
2kBT

γs
ηs(t),

dx`
dt
= −k′̀

γ`
x` − kb

γ`
(x` − xs) +

�
2kBT

γ`
η`(t).

(37)

The bound term of the equilibrium distribution corresponding to
this choice of bound dynamics is

πb(xs, x`) = 1
Zb

e−k′̀ x2
`�2kBTe−kb(xs−x`)2�2kBT. (38)

Kinetic rates: Again without specifying the kinetic rates in
detail, since we set the dynamics, the binding and unbinding rates
must satisfy detailed balance and hence are related via

qon

qoff
= q0

on

q0
off

e−kb(xs−x`)2�2kBTe−(k′̀ −k`)x2
`�2kBT.

This relation favors binding when the tether is not too extended.
Otherwise, the energetic price to pay to “stiffen” is too costly. Recip-
rocally, the bond is more likely to break when the tether is quite
extended, and the energetic gain to loosen the bond is quite high.
One could thus choose, in line with physical intuition,

�������
qon ∼ q0

one−kb(xs−x`)2�2kBT ,
qoff ∼ q0

offe
(k′̀ −k`)x2

`�2kBT.
(39)

The detailed prefactors should be specified in agreement with
detailed balance.

FIG. 6. (a) Cartoon of a fast linker stiffening upon binding and (b) a fast linker
connecting to the particle via a slip bond with force-dependent unbinding.

Effective force in the bound state: The effective force in the
unbound state naturally vanishes. Hence, we focus on the effective
force in the bound state, again obtained via Eq. (26),

Feff
b (xs) = − k′̀ kb

k′̀ + kb
xs. (40)

The coarse-grained force is that associated with two springs in series
with spring constants k′̀ and kb. However, here it was not obvious a
priori which of the spring constants for the linker, either k′̀ or k` or
a mix of both, should contribute to the force.

Effective rates: We now use the rates defined in Eq. (39) to study
coarse-grained kinetic rates as well. Let K = k`kb�(k` + kb) and
K′ = k′̀ kb�(k′̀ + kb). Then, we obtain

�������
qeff

on(xs) ∼ e−Kx2
s �2kBT ,

qeff
off(xs) ∼ e(K′−K)x2

s �2kBT.
(41)

The effective binding rate is determined by the typical, unstiff, radius
of the interaction,

�
kBT�K, similarly as in our foundational exam-

ple in Sec. II. The unbinding rate is now larger at larger distances,
according to how much stiffening occurred. Notice that even if the
bond is really stiff, meaning kb � k`, k′̀ , then K′ − K � k′̀ − k` still
converges to a finite value.

C. Slip bonds with force-dependent unbinding
Another quite common situation is that of slip bonds with

force-dependent unbinding28,43—see Fig. 6(b). In these cases, the
unbinding rate scales as43

qoff(xs, x`) = q0
offe

kslip �xs−x` ��F0 , (42)

where kslip is a characteristic bond spring constant and F0 a charac-
teristic force threshold. Above this threshold, the unbinding rate is
indeed greatly enhanced.

Kinetic rates and satisfying detailed balance: How shall we pro-
ceed to model the dynamics with such force-dependent unbinding
rate, when the system is still at equilibrium? Compared to our foun-
dational example in Sec. II, here we might modify the binding rate
to satisfy detailed balance. Notice that this is not the only possibil-
ity to satisfy detailed balance and one could also consider alternative
bound dynamics. For the sake of the example, here we will consider

qon(xs, x`) = q0
one−kb(xs−x`)2�2kBT (43)

and an additional force on the bound particle that we specify in
Eq. (44) below. The expressions for the rates are satisfactory since
they are coherent with faster binding and slower unbinding when
the particle and linker are closer. Similar choices motivated by their
intuitive behavior date back to Bell and Dembo43,44 and are derived
in Ref. 25 as a coarse-graining of a microscopic model for bind-
ing. The detailed prefactors should be specified in agreement with
detailed balance.

Unbound dynamics: The unbound dynamics are still given
by Eq. (1).
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Bound dynamics: The bound dynamics are now changed com-
pared to Eq. (2) since the linker and particle are now subjected to
additional forces,

���������������������������������

dxs

dt
= −kb

γs
(xs − x`)

−kslip

γs

kBT
F0

sgn (xs − x`) +
�

2kBT
γs

ηs(t),
dx`
dt
= −k`

γ`
x` − kb

γ`
(x` − xs)

+kslip

γ`
kBT
F0

sgn (xs − x`) +
�

2kBT
γ`

η`(t).

(44)

In higher dimensions, sgn(x) = x��x� where x = xs − x`. The bound
term of the equilibrium distribution corresponding to this choice of
bound dynamics is

πb(xs, x`) = 1
Zb

e−k`x2
`�2kBTe−kb(xs−x`)2�2kBTe−ks �xs−x` ��F0. (45)

Effective force in the bound state: The effective force in the
unbound state naturally vanishes. Hence, we focus on the effective
force in the bound state, which has a lengthy expression that we do
not report here. In the case of a small slip force kslipkBT�F0 � k`�xs�,
we obtain

Feff
b (xs) � − k`kb

k` + kb
xs

− k`
k` + kb

kslipkBT
F0

erf
���
���� k`

k` + kb

k`x2
s

2kBT

���. (46)

The coarse-grained force contains now two contributions. The first
one is that associated with two springs in series with spring constants
k` and kb that we have seen before. The second one corresponds to
the slip bond, which grows stronger when the particle goes further
away from the target. Notice that this latter slip bond friction force is
screened by a factor k`

k`+kb
in the coarse-grained state. In the case of a

stiff bond, kb � k`, the slip force is entirely screened, and the particle
“slips”; the linker essentially accommodates changing configurations
by rapidly adjusting its length.

Effective rates: We now use the rates defined in Eqs. (42) and
(43) to study coarse-grained kinetic rates as well. Let K = k`kb�(k`+ kb). Then, we obtain, in the case of a small slip force kslipkBT�F0� k`�xs�,

���������
qeff

on(xs) ∼ e−Kx2
s �2kBT ,

qeff
off(xs) ∼ e

k`
k`+kb

kslip �xs �
F0 .

(47)

The effective binding rate is determined by the typical, unstiff, radius
of the interaction,

�
kBT�K, similarly as in our foundational exam-

ple in Sec. II. The unbinding rate is now larger at larger distances,
with force-dependent unbinding.

VI. MACROSCOPIC CONSEQUENCES
FOR THE CHOICE OF BINDING KINETICS
A. Coarse-graining various microscopic binding
models: The Doi model

How might the effective dynamics change from our founda-
tional example in Sec. II when we consider the Doi model for
binding?

Effective force in the unbound state: According to Eq. (25) and
with Eqs. (12) and (13) describing the Doi model in our context, the
unbound friction force is simply

Feff
u (xs) = −kb

∫ xs+R
xs−R (xs − x`)e− kb(xs−x`)2+k`x2

`
2kBT dx`

∫πu(xs, x`) dx`
, (48)

which has a cumbersome, nonvanishing, expression that we do not
report here. However, we can make a finite perturbation of the
obtained expression in the limit of a stiff bond, when kb � k`, and to
simplify the expression further, we assume that the radius to bind R
is given by the typical spatial scale of the bond R =�2kBT�kb, such
that

Feff
u (xs) � −0.43

�
k`
kb

k`xs. (49)

Since x` wiggles around 0 and even in the unbound state, close to
the linker, the particle feels a recoil force, then it makes sense that
the particle can now feel a recoil force everywhere. The magnitude
of this force is slightly decreased because the bond can only form
when the particle is close enough to the linker. Notice how the
scaling of the effective spring constant is entirely nontrivial as�

k`
kb

k`.
Effective force in the bound state: According to Eq. (26), the

bound friction force is simply

Feff
b (xs) = − k`kb

k` + kb
xs, (50)

which is similar to the results obtained with our foundational
example.

Effective kinetic rates: Again, the expression for the effective
binding and unbinding rates obtained from Eqs. (23) and (24) is
rather cumbersome. When kb � k`, and assuming R =�2kBT�kb,
the kinetic rates are smoothly decaying to 0 (instead of a sharp Heav-
iside function as in the microscopic equations), at a characteristic

distance xs �
�

kBT
k`

�
k`
kb

. Again, one sees how this scaling is entirely
nontrivial. Systematic coarse-graining is therefore essential for faster
numerical simulations and enhanced theoretical investigations.

B. Macroscopic consequences
We finish by briefly exploring how the microscopic choices

for qon(xs, x`) and qoff(xs, x`) can affect the macroscopic
dynamics—see Sec. II B. To simplify the exploration, here we
directly simulate the coarse-grained equations for the slow particle,
using the coarse-grained forces and kinetic rates in Eqs. (22)–(26).
We test the impact of different initial choices of microscopic
binding, specifically with model 1 corresponding to Eq. (9) with
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FIG. 7. Different choices of qon(x)
and qoff(x) yield different macroscopic
dynamics. Model 1 corresponds to
Eq. (9) with spatially dependent binding
only and model 2 corresponds to
Eq. (10) with both spatially dependent
binding and unbinding. Simulation para-
meters are q0

off = 0.1τ−1
0 and q0

on and
are chosen such that Πb�Πu = 1. 1000
simulations are run until T = 1000τ0.
(a) Mean unbinding time as a function
of the effective spring constant K,
showing divergence between models 1
and 2. Theory curves are obtained with
Eq. (51). (b) Mean binding time as a
function of the effective spring constant
K with similar trend. (c) Macroscopic
bound probabilities Πb are set to be
fixed and are the same for both models.
(d) Macroscopic diffusion coefficient
D = limt→∞�xs(t)2��(2t) for both
models.

spatially dependent binding only and model 2 from Eq. (10) with
both spatially dependent binding and unbinding. To compare
different microscopic models in a sensible fashion, we constrain
the macroscopic bound probability Πb = 0.5 [see Fig. 7(c)] for
all microscopic models. We then calculate the macroscopic
mean binding and unbinding times for the particle [Figs. 7(a)
and 7(b)], as well as the particle’s long-time diffusion coefficient
[Fig. 7(d)], determined by its mean-squared displacement. Impor-
tantly, we vary the effective bond spring constant K = k`kb�(kb + k`)
to probe how model parameters affect macroscopic dynamics.

We find that both the choice of microscopic binding model
and the parameter K significantly affect the macroscopic binding
and unbinding times [Figs. 3(a) and 3(b)]. Since the macroscopic
binding probability Πb is fixed, the mean binding and unbinding
times are identical, and hence Figs. 7(a) and 7(b) appear the same.
At long times, we expect, as for the coarse-graining over x`, that
the kinetic rates do not depend on the position xs anymore and
would verify

Qoff = ∫qeff
off(xs)πeff

b (xs) dxs

∫πeff
b (xs) dxs

, (51)

and similarly for the binding rate Qon, in agreement with other
works.25 Equation (51) gives the mean unbinding time as 1�Qoff and
reproduces perfectly the numerical results [lines in Fig. 3(a)].

For the different microscopic models, the response to various
binding constants K is nontrivial. For model 1, the macroscopic
binding and unbinding times remain constant. In model 1, qeff

off(xs)
does not depend on space, and, therefore, its macroscopic counter-
part qeff

off, which verifies Eq. (51), seems to have no direct dependence

on K. However, qeff
on(xs) is inherently spatially dependent and hence

its macroscopic counterpart may depend on K as well, via the asso-
ciated length scale

�
kBT�K. In contrast, with model 2 the macro-

scopic kinetic rates increase with the binding constant K. When K
is larger, the bond is stronger, which decreases the binding time but
increases the unbinding time. Hence, the macroscopic dependence
where both kinetic rates increase with K is interesting. In fact, to
properly coarse-grain to this now macroscopic scale, one should also
take into account the probability distribution of being in each state
with a given extension. Such entangled behavior requires proper
integration beyond simple intuition. Eventually, we find that the
macroscopic binding times strongly depend on microscopic choices
for the kinetic rates, which means one should use caution when
designing such models.

In addition, for both microscopic model choices, the long-time
self-diffusion coefficient of the particle depends on K [Fig. 3(d)]. In
fact, at small K we find D→ kBT�γs since the bond is weak enough
that it barely affects particle motion. At larger K values, we find
D→ kBT�2γs since when it is bound, the bond is strong enough that
it prevents any motion, and the particle is bound half of the time(Πb = 0.5). The dependence on K appears to be similar for both
microscopic binding models 1 and 2. In more varied models for
binding, there is no reason this should stay true. We leave the general
exploration of macroscopic transport properties, such as diffusion
coefficients, and their dependence on microscopic binding kinetics,
for future work.

VII. CONCLUSION
In this work, we have attempted to unify and justify vari-

ous coarse-graining approaches for linker dynamics.22,25,27–34,36,43–45
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In these earlier approaches, we have identified many different
choices for how binding and unbinding depend on distance, yet
(1) these are often heuristically motivated, or (2) they only pro-
vide coarse-grained binding rates and not the full dynamics of the
slow particles including forces and friction. Here, we have addressed
all of these issues by providing a systematic derivation of effective
dynamics, including effective friction, forces, and binding kinetics
for linker molecules that obey detailed microscopic descriptions.
Our coarse-graining approach is based on averaging techniques and
preserves detailed balance, in line with our assumption of equi-
librium dynamics. We have verified our approach with numerical
simulations and found excellent agreement in both the effective
kinetic rates and dynamics after averaging. This averaging analysis
hinges on ε = γ`�γs being small, corresponding to a large separation
of timescales, between the fast linker and slow particle relaxation.
When ε � 1, the coarse-grained dynamics diverge from the detailed
model. We showed how our general framework may be applied
to diverse microscopic scenarios, including those with two linkers
binding to each other, a linker stiffening upon binding, or a slip bond
with force-dependent unbinding. Finally, we showed that different
microscopic kinetic rates result in fundamentally different dynam-
ics at the macroscopic scale, raising caution in making these choices
without care.

Many choices for effective dynamics in the literature clearly
violate detailed balance and hence operate out of equilibrium.28,61

The coarse-graining in Ref. 25 computes the effective rates in a
mechanical model with nonequilibrium fluctuations, but relating
nonequilibrium rates and dynamics seems to be missing a unified
framework. Our systematic approach to coarse-graining may pro-
vide a first step toward addressing this. The authors in Ref. 62
interestingly note that effective equilibria can arise by switching
between nonconservative systems, providing hope that this pur-
suit is both fruitful and interesting. Thus, extending our method
to out-of-equilibrium systems would be of broad relevance, in par-
ticular, to explore transient bonds with activated cleaving that are
common in viral linker-mediated motion63,64 and also artificial
nano-motors.7

Although we have investigated relatively simple setups here,
the tools we introduce and the lessons learned are applicable
across many more complex systems. The formulas we derived for
effective dynamics can be applied with ease via Eqs. (22)–(26)
and provide a baseline for more systematic coarse-graining found
in simulations and theoretical studies across the literature. One
such example is molecular motor binding in intracellular trans-
port. There, coarse-graining ranges from nonspatial effective kinetic
rates,65,66 motor linkers obeying a worm-like chain model,67,68

or Doi-like motors that bind when within a specific radius of
interaction.48 Coarse-grained cross-linked cytoskeletal networks
are studied extensively,5,6,69–71 especially in self-organization in
the mitotic spindle72–75 and actomyosin network mechanics.76,77

Transient dynamics of (typically coarse-grained) cross-linkers are
also fundamental in controlling viral responses in bio-gels78,79

and building chromosomal territories.80 Our framework also
readily extends to systems that are not “cross”-linked, such as
membrane-filament interactions that drive cell protrusion81,82 and
adhesions.9,25,45

SUPPLEMENTARY MATERIAL

See the supplementary material for further mathematical details
of the coarse-graining procedure, including calculations of higher
order corrections.
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NOMENCLATURE

xs coordinate of the slow particle
x` coordinate of the fast linker
x0 characteristic length scale for nondimensionalization
γs friction coefficient on the slow particle
γ` friction coefficient on the fast linker
ε = γ`�γs ratio of friction coefficients
k` spring constant describing the linker
kb spring constant describing the bond between the

particle and the linker
kBT thermal energy
τ0 characteristic timescale for nondimensionalization
πu/b(xs, x`) microscopic unbound (respectively, bound) proba-

bility distribution
πeff

u/b(xs) coarse-grained unbound (respectively, bound) prob-
ability distribution

Πu/b macroscopic unbound (respectively, bound)
probability

Fu/b(xs, x`) microscopic force on the slow particle in the
unbound (respectively, bound) state
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Feff
u/b(xs) coarse-grained force on the slow particle in the

unbound (respectively, bound) state
qon/off(xs, x`) microscopic binding (respectively, unbinding) rate
qeff

on/off(xs) coarse-grained binding (respectively, unbinding)
rate

Qon/off macroscopic binding (respectively, unbinding) rate

APPENDIX: DETAILED BALANCE
AT THE COARSE-GRAINED LEVEL

Finally, for physical consistency, we need to check that the
marginal equilibrium distribution, i.e., the equilibrium distribution
integrated over the fast degrees of freedom πeff(xs) = ∫π(xs, x`)dx`,
is indeed a stationary solution of the effective dynamics obtained.
The marginal distribution is

πeff(xs) = ���
πeff

u (xs)
πeff

b (xs)
���

=
√

2πe−Us(xs)�kBT

Z

�����

1√
k`

q0
on

q0
off
�

k` + kb
e−K x2

s
2kBT

�����
. (A1)

It is clear that the marginal distribution of either state is indeed
a stationary solution of the dynamics in each state as specified in
Eq. (21).

To check that the marginal distribution is a stationary distribu-
tion of the dynamics as a whole, we still need to check that detailed
balance is satisfied at the coarse-grained level. This is not guaranteed
a priori since the averaging technique does not use at any point that
it should preserve detailed balance. At this point, it is important to
notice that in fact the effective rates are related to the equilibrium
probability distribution as

qeff
on(xs) = ∫qon(xs, x`)πu(xs, x`) dx`

∫πu(xs, x`) dx`
(A2)

and similarly for qeff
off. Hence, we simply have that

πeff
u qeff

on(xs) = πeff
u
∫ qon(xs, x`)πu(xs, x`) dx`

∫ πu(xs, x`)dx`

= � qon(xs, x`)πu(xs, x`) dx`

= � qoff(xs, x`)πb(xs, x`) dx`

= � qoff(xs, x`)πb(xs, x`) dx`
πeff

b∫πb(xs, x`) dx`
= πeff

b qeff
off(xs).

Detailed balance is therefore also true at the coarse-grained level.
Since the marginal distribution is consistent with the dynamics in
each state and with detailed balance, it is indeed the stationary
solution to the effective dynamics.
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